
Audio System Toolbox™

Reference

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Audio System Toolbox™ Reference Guide
© COPYRIGHT 2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2016 Online only New for Version 1.0 (Release 2016a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Apps in Audio System Toolbox
1

Functions in Audio System Toolbox
2

System objects in Audio System Toolbox
3

Classes in Audio System Toolbox
4

Blocks in Audio System Toolbox
5

1

Apps in Audio System Toolbox

1 Apps in Audio System Toolbox

1-2

Audio Test Bench

Develop, debug, test, and tune audio plugin

Description
The Audio Test Bench provides a graphical interface through which you can
develop, debug, test, and tune your audio plugin in real time. You can interact with
properties of your audio plugin using associated parameter graphical widgets. See
audioPluginParameter for more information.

Using the Audio Test Bench, you can:

• Debug your audio plugin.
• Simulate your audio plugin as generated in a digital audio workstation (DAW).
• Visualize your processing with time-domain and frequency-domain scopes.
• Interactively synchronize MIDI controls to plugin properties.

Develop and Test Features

Button Description

 Run Run your audio plugin in an audio stream
loop using the specified input and output
configuration. You can tune parameters
of your audio processing algorithm in real
time. The MATLAB® command line and
objects used by the test bench are locked
while the test bench is running.

 Pause (appears while audio test bench
is running)

Pause audio stream loop. The MATLAB
command line is released. Objects used by
the test bench remain locked.

 Step Forward Call the processing function of your audio
plugin one time in an audio stream loop,
with input and output specified by your
input and output configuration.

 Audio Test Bench

1-3

Button Description

 Stop Stop the audio stream loop. The MATLAB
command line and objects used by the test
bench are released.

 Reset Reset internal states of your audio plugin.

 View Source Code Open the source file of your audio plugin.

 Time Scope Open an instance of dsp.TimeScope, which
provides a time-domain visualization of the
output from your audio stream loop.

 Spectrum Analyzer Open an instance of
dsp.SpectrumAnalyzer, which provides
a frequency-domain visualization of the
output from your audio stream loop.

 Synchronize to MIDI Controls Start the configureMIDI user interface
(UI) for your plugin object.

 Audio Test Bench Help Open MATLAB documentation for Audio
Test Bench.

 Configure Input
Open input configuration UI. The
UI options depend on whether you
choose Audio File Reader or
Audio Device Reader for the input
to your audio stream loop. For more
information, see audioDeviceReader and
dsp.AudioFileReader.

 Configure Output
Open output configuration UI. The UI
options depend on whether you choose
Audio File Writer or Audio Device
Writer for the output from your audio
stream loop. If you choose to output
Both, two dialog boxes open: one for
the Audio File Writer and one for
the Audio Device Writer. For more
information, see dsp.AudioFileWriter and
audioDeviceWriter.

1 Apps in Audio System Toolbox

1-4

Open the Audio Test Bench App

At the MATLAB command prompt, enter:

• audioTestBench pluginClass

Opens an audio plugin test bench user interface (UI) for an instance of pluginClass.
• audioTestBench(pluginClassInstance)

Opens an audio plugin test bench UI for pluginClassInstance, where
pluginClassInstance is an instance of an audio plugin class.

Note: The input to audioTestBench must derive from the audioPlugin class, not
the audioPluginSource class.

• audioTestBench ASTSystemObject

Opens an audio plugin test bench UI for an instance of a compatible Audio System
Toolbox™ System object™.

• audioTestBench(ASTSystemObjectInstance)

Opens an audio plugin test bench UI for ASTSystemObjectInstance, where
ASTSystemObjectInstance is an instance of a compatible Audio System Toolbox
System object.

Examples

Open Audio Test Bench from Plugin Class

audioTestBench audiopluginexample.DampedVolumeController;

 Audio Test Bench

1-5

Open Audio Test Bench from Plugin Object

paramEQPlugin = audiopluginexample.ParametricEqualizer;

audioTestBench(paramEQPlugin);

1 Apps in Audio System Toolbox

1-6

Open Audio Test Bench from Instance of Audio System Toolbox System Object

Construct an object from the reverberator System object.

reverb = reverberator

 Audio Test Bench

1-7

reverb =

 reverberator with properties:

 PreDelay: 0

 HighCutFrequency: 20000

 Diffusion: 0.5000

 DecayFactor: 0.5000

 HighFrequencyDamping: 5.0000e-04

 WetDryMix: 0.3000

 SampleRate: 44100

Open the audio test bench to interact with your System object.

audioTestBench(reverb);

1 Apps in Audio System Toolbox

1-8

Open Audio Test Bench from Audio System Toolbox System Object

Open the audio test bench to interact with your plugin.

audioTestBench reverberator;

 Audio Test Bench

1-9

• “Use the Audio Test Bench”

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “Design an Audio Plugin”
• “Audio Plugin Example Gallery”

1 Apps in Audio System Toolbox

1-10

See Also

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Classes
audioPluginSource | audioPlugin

Introduced in R2016a

2

Functions in Audio System Toolbox

2 Functions in Audio System Toolbox

2-2

audioPluginInterface

Specify audio plugin interface

Syntax

PluginInterface = audioPluginInterface

PluginInterface = audioPluginInterface(pluginParameters)

PluginInterface = audioPluginInterface(Name,Value)

Description

PluginInterface = audioPluginInterface returns an object, PluginInterface,
that specifies the interface of an audio plugin in a digital audio workstation (DAW)
environment. It also specifies interface attributes, such as naming for identification.

PluginInterface = audioPluginInterface(pluginParameters) specifies
audio plugin parameters, which are user-facing variables associated with audio plugin
properties. See audioPluginParameter for more details.

PluginInterface = audioPluginInterface(Name,Value) specifies
audioPluginInterface properties using one or more Name,Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin

 methods

 function out = process(~,in)

 out = in;

 end

 end

end

 audioPluginInterface

2-3

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

 properties (Constant)

 PluginInterface = audioPluginInterface;

 end

 methods

 function out = process(~,in)

 out = in;

 end

 end

end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

2 Functions in Audio System Toolbox

2-4

end

Pass audioPluginParameter to audioPluginInterface. To associate the
plugin property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain'));

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW)
environment, the plugin property, Gain, synchronizes with a user-facing plugin
parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name,
vendor version, unique identification, number of input channels, and number of output
channels.

classdef monoGain < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain'),...

 'PluginName','Simple Gain',...

 'VendorName','Cool Company',...

 'VendorVersion','1.0.0',...

 'UniqueId','1a1Z',...

 'InputChannels',1,...

 'OutputChannels',1);

 audioPluginInterface

2-5

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Input Arguments

pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a
digital audio workstation (DAW) environment, they synchronize plugin class properties
with user-facing parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'PluginName','cool effect','VendorVersion','1.0.2' specifies
the name of the generated audio plugin as 'cool effect' and the vendor version as
'1.0.2'.

'PluginName' — Name of generated plugin
name of plugin class (default) | string

Name of your generated plugin, as seen by a host audio application, specified as a
comma-separated pair consisting of 'PluginName' and a string of up to 127 characters.
If 'PluginName' is not specified, the generated plugin is given the name of the audio
plugin class it is generated from.

'VendorName' — Vendor name of the plugin creator
' ' (default) | string

2 Functions in Audio System Toolbox

2-6

Vendor name of the plugin creator, specified as the comma-separated pair
'VendorName' and a string of up to 127 characters.

'VendorVersion' — Vendor version
'1.0.0' (default) | dot-separated string

Vendor version used to track plugin releases, specified as a comma-separated pair
consisting of 'VendorVersion' and a dot-separated string of 1–3 integers in the range 0
to 9.
Example: '1'

Example: '1.4'

Example: '1.3.5'

'UniqueId' — Unique identifier of plugin
'MWap' (default) | four-character string

Unique identifier for your plugin, specified as a comma-separated pair consisting of
'UniqueID' and a four-character string, used for recognition in certain digital audio
workstation (DAW) environments.

'InputChannels' — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of 'InputChannels'
and an integer or vector of integers. The input channels are the number of input data
arguments and associated channels (columns) passed to the processing function of your
audio plugin.
Example: 'InputChannels',3 calls the processing function with one data argument
containing 3 channels.
Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the
third contains 1 channel, and the fourth contains 5 channels.

Note: This property is not applicable for audio source plugins, and must be omitted.

'OutputChannels' — Output channels
2 (default) | integer | vector of integers

 audioPluginInterface

2-7

Output channels, specified a comma-separated pair consisting of 'OutputChannels'
and an integer or vector of integers. The output channels are the number of input data
arguments and associated channels (columns) passed from the processing function of
your audio plugin.
Example: 'OutputChannels',3 specifies the processing function to output one data
argument containing 3 channels.
Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4
data arguments. The first argument contains 2 channels, the second contains 4 channels,
the third contains 1 channel, and the fourth contains 5 channels.

See Also
audioPlugin | audioPluginSource | audioPluginParameter | generateAudioPlugin
| validateAudioPlugin

Introduced in R2016a

2 Functions in Audio System Toolbox

2-8

audioPluginParameter
Specify audio plugin parameters

Syntax

pluginParameter = audioPluginParameter(propertyName)

pluginParameter = audioPluginParameter(propertyName,Name,Value)

Description

pluginParameter = audioPluginParameter(propertyName) returns an
object, pluginParameter, that associates an audio plugin parameter to the audio
plugin property specified by propertyName. Use the plugin parameter object,
pluginParameter, as an argument to an audioPluginInterface function in your
plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench in
the MATLAB environment, plugin parameters are tunable, user-facing variables with
defined ranges mapped to controls. When you modify a parameter value using a control,
the associated plugin property is also modified. If the audio processing algorithm of the
plugin depends on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the
environment in which a plugin is run, see “Implementation of Audio Plugin Parameters”
on page 2-13.

pluginParameter = audioPluginParameter(propertyName,Name,Value)

specifies audioPluginParameter properties using one or more Name,Value pair
arguments.

Examples

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

 audioPluginParameter

2-9

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface;

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

 end

end

Pass audioPluginParameter to audioPluginInterface. To associate the
plugin property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain'));

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.Gain;

 end

2 Functions in Audio System Toolbox

2-10

 end

end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain',
'Label' as '(linear)', and 'Mapping' as {'lin',0,20}.

classdef myAudioPlugin < audioPlugin

 properties

 Gain = 1;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName', 'Awesome Gain',...

 'Label', '(linear)',...

 'Mapping', {'lin',0,20}));

 end

 methods

 function out = process(plugin,in)

 out = in*plugin.gain;

 end

 end

end

Input Arguments

propertyName — Name of audio plugin property
string

Name of the audio plugin property that you want to associate with a parameter, specified
as a string. Enter the property name exactly as it is defined in the property section of
your audio plugin class.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 audioPluginParameter

2-11

Example: 'DisplayName','Gain','Label','dB' specifies the display name of your
parameter as 'Gain' and the display label for parameter value units as 'dB'.

'DisplayName' — Display name of parameter
associated property name (default) | string

Display name of your parameter, specified as a comma-separated pair consisting of
'DisplayName' and a string. If 'DisplayName' is not specified, the name of the
associated property is used.

The display name of your parameter is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

'Label' — Display label for parameter value units
' ' (default) | string

Display label for parameter value units, specified as a comma-separated pair consisting
of 'Label' and a string.

The display label for parameter value units is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

The 'Label' name-value pair is ignored for nonnumeric parameters.

'Mapping' — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as a comma-separated pair
consisting of 'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated
parameter range.

The first element of the cell array is a string specifying the kind of mapping. The valid
values are 'lin', 'log', 'pow', 'int' and 'enum'. The subsequent elements of the
cell array depend on the kind of mapping. The valid mappings depend on the property
data type.

Property Data Type Valid Mappings Default

double 'lin', 'log', 'pow',
'int'

{'lin', 0, 1}

2 Functions in Audio System Toolbox

2-12

Property Data Type Valid Mappings Default

logical 'enum' {'enum', 'off', 'on'}
enumeration class 'enum' enumeration name

'lin' — Specifies a linear relationship with given minimum and maximum values.

Example: {'lin', 0, 24} specifies a linear relationship with a minimum of 0 and
maximum of 24.

'log' — Specifies a logarithmic relationship with given minimum and maximum values,
where the control position maps to the logarithm of the property value. The minimum
value must be greater than 0.

Example: {'log', 1, 22050} specifies a logarithmic relationship with a minimum of 1
and a maximum of 22050.

'pow' — Specifies a power law relationship with given exponent, minimum, and
maximum values. The property value is related to the control position raised to the

exponent: property value parameter value() = + - ¥ ()min (max min)
exp .

Example: {'pow', 2, 0, 10} specifies a power law relationship with an exponent of 2, a
minimum of 0, and a maximum of 10.

'int' — Quantizes the control position and maps it to the range of consecutive integers
with given minimum and maximum values.
Example: {'int', -100, 3} specifies a linear, quantized, relationship with a minimum of
–100 and maximum of 3. The property value is mapped as an integer in the range –100 to
3.

'enum' (logical) — Optionally provides strings for display on the plugin dialog box.

Example: {'enum','unvoiced speech','voiced speech'} specifies the string
'unvoiced speech' if the parameter value is false and 'voiced speech' if the
parameter value is true.

'enum' (enumeration class) — Optionally provides strings for the members of the
enumeration class.
Example: {'enum', 'white noise', 'pink noise', 'brown noise'} specifies the
strings 'white noise', 'pink noise', 'brown noise'.

 audioPluginParameter

2-13

More About

Implementation of Audio Plugin Parameters

Audio plugin parameters are visible and tunable in both the MATLAB and digital audio
workstation (DAW) environments.

MATLAB Environment. Use Audio Test Bench to interact with plugin parameters in
the MATLAB environment.

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to
a DAW environment. The DAW environment determines the exact layout of plugin
parameters as seen by the plugin user.

2 Functions in Audio System Toolbox

2-14

See Also
audioPluginSource | audioPlugin | audioPluginInterface | generateAudioPlugin
| validateAudioPlugin

Introduced in R2016a

 configureMIDI

2-15

configureMIDI

Configure MIDI connections between audio plugin and MIDI controller

Syntax

configureMIDI(myAudioPlugin)

configureMIDI(myAudioPlugin,propertyName)

configureMIDI(myAudioPlugin,propertyName,controlNumber)

configureMIDI(myAudioPlugin,propertyName,controlNumber,'DeviceName',

deviceNameValue)

Description

configureMIDI(myAudioPlugin) opens a MIDI configuration user interface (UI).
Use the UI to synchronize parameters of the plugin, myAudioPlugin, to MIDI controls
on your default MIDI device. You can also generate MATLAB code corresponding to the
MIDI configuration developed using the configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or
host operating system.

configureMIDI(myAudioPlugin,propertyName) makes the plugin property,
propertyName, respond to any control on the default MIDI device.

configureMIDI(myAudioPlugin,propertyName,controlNumber) makes the plugin
property respond to the MIDI control specified by controlNumber.

configureMIDI(myAudioPlugin,propertyName,controlNumber,'DeviceName',

deviceNameValue) makes the plugin property respond to the MIDI control specified by
controlNumber on the device specified by deviceNameValue.

2 Functions in Audio System Toolbox

2-16

Examples

Synchronize Plugin Parameters to MIDI Controls

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

 configureMIDI

2-17

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI
controls.

To disconnect the property and control currently displayed on your configureMIDI
UI, click Reset Control at any time.

5 Click OK.

The specified MIDI controls and properties and now synchronized.

Generate MATLAB Code from configureMIDI UI

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI. You can embed the MATLAB code in your simulation so that you do
not need to reopen the UI to restore your chosen MIDI connections.

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

2 Functions in Audio System Toolbox

2-18

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

4 Select the Generate MATLAB Code check box.

 configureMIDI

2-19

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that
you developed.

2 Functions in Audio System Toolbox

2-20

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

configureMIDI(parametricEQPlugin,'CenterFrequency1');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device

Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

 configureMIDI

2-21

Use midiid to identify a MIDI control to synchronize with your property.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlNumber =

 1003

device =

nanoKONTROL2

Use configureMIDI to synchronize your chosen MIDI control, specified by
controlNumber, with a property.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device

Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a specific MIDI control on a specific MIDI device.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlNumber =

 1003

device =

nanoKONTROL2

2 Functions in Audio System Toolbox

2-22

Use configureMIDI to synchronize a property with your chosen MIDI control, specified
by controlNumber, on your chosen MIDI device, specified by device.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber,'DeviceName',device);

Input Arguments

myAudioPlugin — Audio plugin
object

Audio plugin, specified as an object that inherits from the audioPlugin class.

propertyName — Name of audio plugin property
string

Name of the audio plugin property, specified as a string. Enter the property name exactly
as it is defined in the property section of your audio plugin class.

controlNumber — MIDI device control number
integer values

MIDI device control number, specified as an integer. The value is assigned to the control
by the device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device name
string

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a string. If you do not specify a MIDI device name, the default MIDI device is
used.

Limitations

For MIDI connections established by configureMIDI, moving a MIDI control sends
a callback to update the associated plugin property values. To synchronize your MIDI
device in an audio stream loop, you might need to use the drawnow command for the
callback to process immediately. For efficiency, use the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio plugin, uncomment the
drawnow limitrate command from this code :

 configureMIDI

2-23

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-44p1-stereo-11secs.mp3');

deviceWriter = audioDeviceWriter;

compressor = dynamicRangeCompressor;

configureMIDI(compressor,'Threshold');

while ~isDone(fileReader)

 input = step(fileReader);

 output = step(compressor,input);

 step(deviceWriter,output);

% drawnow limitrate;

end

release(fileReader);

release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as
dsp.SpectrumAnalyzer, dsp.TimeScope, or dsp.ArrayPlot, the drawnow command is not
required.

More About
• “Musical Instrument Digital Interface (MIDI)”

See Also
audioPlugin | audioPluginSource | disconnectMIDI | getMIDIConnections |
midicallback | midicontrols | midiid | midiread | midisync

Introduced in R2016a

2 Functions in Audio System Toolbox

2-24

designParamEQ

Design parametric equalizer

Syntax

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth)

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode)

Description

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order
parametric equalizer with specified gain, center frequency, and bandwidth. B and A are
matrices of numerator and denominator coefficients, with columns corresponding to
cascaded second-order section (SOS) filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies whether
the parametric equalizer is implemented with second-order sections or fourth-order
sections (FOS).

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized
bandwidth of the bands of your parametric equalizer.

N = [2,4];

gain = [6,-4];

centerFreq = [0.25,0.75];

bandwidth = [0.12,0.10];

Generate the filter coefficients using the specifed parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

 designParamEQ

2-25

Create a filter matrix compatible with fvtool.

SOS = [B',[ones(sum(N)/2,1),A']];

Visualize your filter design.

fvtool(SOS)

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

2 Functions in Audio System Toolbox

2-26

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = step(fileReader);

 play(deviceWriter,audio);

 count = count+1;

end

reset(fileReader);

Design a SOS parametric equalizer.

N = [4,4];

gain = [-25,35];

centerFreq = [0.01,0.5];

bandwidth = [0.35,0.5];

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];

fvtool(SOS,...

 'Fs',fileReader.SampleRate,...

 'FrequencyScale','Log');

 designParamEQ

2-27

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port',...

 'ScaleValuesInputPort',false);

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',fileReader.SampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signals',...

2 Functions in Audio System Toolbox

2-28

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = step(fileReader);

 equalizedSignal = step(myFilter,originalSignal,B,A);

 step(scope,[originalSignal(:,1),equalizedSignal(:,1)]);

 play(deviceWriter,equalizedSignal);

 count = count+1;

end

 designParamEQ

2-29

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

2 Functions in Audio System Toolbox

2-30

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = step(fileReader);

 play(deviceWriter,audio);

 count = count+1;

end

reset(fileReader);

Design FOS parametric equalizer coefficients.

N = [2,4];

gain = [5,10];

centerFreq = [0.025,0.65];

bandwidth = [0.025,0.35];

mode = 'fos';

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode);

Construct FOS IIR filters.

section1 = dsp.IIRFilter('Numerator',B(:,1)','Denominator',[1,A(:,1)']);

section2 = dsp.IIRFilter('Numerator',B(:,2)','Denominator',[1,A(:,2)']);

Visualize the frequency response of your parameteric equalizer.

[H1,w] = freqz(section1);

H2 = freqz(section2);

H = 20.*log10(abs(H1.*H2));

semilogx(w,H);

title('Magnitude Response (dB)')

xlabel('Frequency (kHz)')

ylabel('Magnitude (dB)')

grid on

 designParamEQ

2-31

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',fileReader.SampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signals',...

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal, and visualize the original and filtered spectrums.

2 Functions in Audio System Toolbox

2-32

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = step(fileReader);

 x = step(section1,originalSignal);

 y = step(section2,x);

 step(scope,[originalSignal(:,1),y(:,1)]);

 play(deviceWriter,y);

 count = count + 1;

end

 designParamEQ

2-33

Input Arguments

N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be even integers.

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be real-valued.

2 Functions in Audio System Toolbox

2-34

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

Normalized center frequency of equalizer bands, specified as a scalar or row vector of real
values in the range 0 to 1, where 1 corresponds to the Nyquist frequency (π rad/sample).
If centerFreq is specified as a row vector, separate equalizers are designed for each
element of centerFreq.

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as
centerFreq. Elements of the vector are specified as real values in the range 0 to 1,
where 1 corresponds to the Nyquist frequency (π rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to -Inf (notch filter),
normalized bandwidth is measured at the 3 dB attenuation point: 10 0 510¥ ()log . .

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor
as

Q

octave bandwidth

octave bandwidth
=

-

()

()

2

2 1

.

Then convert to bandwidth

bandwidth
centerFreq

Q
= .

mode — Design mode
'sos' (default) | 'fos'

Design mode, specified as 'sos' or 'fos'.

• 'sos' — Implements your equalizer as cascaded second-order filters.
• 'fos' — Implements your equalizer as cascaded fourth-order filters. Because fourth-

order sections do not require the computation of roots, they are generally more
computationally efficient.

 designParamEQ

2-35

Output Arguments

B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. Each column of B corresponds to the
numerator coefficients of a different second-order or fourth-order section of your cascaded
equalizer.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. Each column of A corresponds to
the denominator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A does not include the leading unity coefficient for each section.

See Also
multibandParametricEQ | dsp.biquadFilter | designShelvingEQ |
designVarSlopeFilter

Introduced in R2016a

2 Functions in Audio System Toolbox

2-36

designShelvingEQ

Design shelving equalizer

Syntax

[B,A] = designShelvingEQ(gain,slope,Fc)

[B,A] = designShelvingEQ(gain,slope,Fc,type)

Description

[B,A] = designShelvingEQ(gain,slope,Fc) designs a low-shelf equalizer with
the specified gain, slope, and cutoff frequency, Fc. The equalizer is returned as cascaded
second-order section (SOS) IIR filters.

[B,A] = designShelvingEQ(gain,slope,Fc,type) specifies the design type as a
low-shelving or high-shelving equalizer.

Examples

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain = 5;

slope1 = 0.5;

slope2 = 0.75;

slope3 = 1;

 designShelvingEQ

2-37

Fc = 1000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain,slope1,Fc);

[B2,A2] = designShelvingEQ(gain,slope2,Fc);

[B3,A3] = designShelvingEQ(gain,slope3,Fc);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];

SOS2 = [B2',[1,A2']];

SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(...

 dsp.BiquadFilter('SOSMatrix',SOS1),...

 dsp.BiquadFilter('SOSMatrix',SOS2),...

 dsp.BiquadFilter('SOSMatrix',SOS3),...

 'Fs',Fs,...

 'FrequencyScale','Log');

legend('slope = 0.1',...

 'slope = 0.5',...

 'slope = 1');

2 Functions in Audio System Toolbox

2-38

Filter Audio Using Low-Shelf Equalizer

Design a low-shelf equalizer, and then use it to filter an audio signal.

Construct audio file reader and audio device writer objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

 designShelvingEQ

2-39

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = step(fileReader);

 play(deviceWriter,audio);

 count = count+1;

end

reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;

slope = 3;

Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);

Visualize your equalizer design.

SOS = [B',[1,A']];

fvtool(dsp.BiquadFilter('SOSMatrix',SOS),...

 'Fs',fileReader.SampleRate,...

 'FrequencyScale','Log');

2 Functions in Audio System Toolbox

2-40

Construct a biquad filter object.

myFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port',...

 'ScaleValuesInputPort',false);

Construct a spectrum analyzer object to visualize the orignal audio signal and the audio
signal passed through your low-shelf equalizer.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',fileReader.SampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signal',...

 designShelvingEQ

2-41

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the equalized audio signal and visualize the original and equalized spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = step(fileReader);

 equalizedSignal = step(myFilter,originalSignal,B,A);

 step(scope,[originalSignal(:,1),equalizedSignal(:,1)]);

 play(deviceWriter,equalizedSignal);

 count = count+1;

end

2 Functions in Audio System Toolbox

2-42

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The
three shelving equalizers use three separate gain specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB

Fs = 44.1e3;

gain1 = -6;

gain2 = 6;

gain3 = 12;

 designShelvingEQ

2-43

slope = 0.8;

Fc = 18000/(Fs/2);

Design the filter coefficents using the specified parameters.

[B1,A1] = designShelvingEQ(gain1,slope,Fc,'hi');

[B2,A2] = designShelvingEQ(gain2,slope,Fc,'hi');

[B3,A3] = designShelvingEQ(gain3,slope,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];

SOS2 = [B2',[1,A2']];

SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(dsp.BiquadFilter('SOSMatrix',SOS1),...

 dsp.BiquadFilter('SOSMatrix',SOS2),...

 dsp.BiquadFilter('SOSMatrix',SOS3),...

 'Fs',Fs);

legend('gain = -6 dB',...

 'gain = 6 dB',...

 'gain = 12 dB',...

 'Location','NorthWest')

2 Functions in Audio System Toolbox

2-44

Input Arguments

gain — Peak gain (dB)
real scalar in the range –12 to 12

Peak gain in dB, specified as a real scalar in the range –12 to 12.

slope — Slope coefficient
real scalar in the range 0 to 5

Slope coefficient, specified as a real scalar in the range 0 to 5.

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

 designShelvingEQ

2-45

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2
dB.

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'— Low shelving equalizer
• 'hi'— High shelving equalizer

Output Arguments

B — Numerator filter coefficients
three-element column vector

Numerator filter coefficients of the designed second-order IIR filter, retuned as a three-
element column vector.

A — Denominator filter coefficients
two-element column vector.

Denominator filter coefficients of the designed second-order IIR filter, returned as a two-
element column vector. A does not include the leading unity coefficient.

See Also
multibandParametricEQ | designParamEQ | designVarSlopeFilter

Introduced in R2016a

2 Functions in Audio System Toolbox

2-46

designVarSlopeFilter
Design variable slope lowpass or highpass IIR filter

Syntax

[B,A] = designVarSlopeFilter(slope,Fc)

[B,A] = designVarSlopeFilter(slope,Fc,type)

Description

[B,A] = designVarSlopeFilter(slope,Fc) designs a lowpass filter with the
specified slope and cutoff frequency. B and A are matrices of numerator and denominator
coefficients, with columns corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a
lowpass or highpass filter.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass
IIR filters. The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fc1 = 10000/(Fs/2);

Fc2 = 16000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope,Fc1);

[B2,A2] = designVarSlopeFilter(slope,Fc2);

 designVarSlopeFilter

2-47

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];

SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,'Fs',Fs);

legend('Fc = 10000 Hz',...

 'Fc = 16000 Hz',...

 'Location','SouthWest');

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter.
Use your lowpass filter to process an audio signal.

2 Functions in Audio System Toolbox

2-48

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',frameSize);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(fileReader);

setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500

 audio = step(fileReader);

 play(deviceWriter,audio);

 count = count+1;

end

reset(fileReader);

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized frequency cutoff.

[B,A] = designVarSlopeFilter(12,0.15);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];

fvtool(SOS,...

 'Fs',fileReader.SampleRate);

 designVarSlopeFilter

2-49

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...

 'SOSMatrixSource','Input port',...

 'ScaleValuesInputPort',false);

Construct a spectrum analyzer System object to visualize the original audio signal and
the audio signal passed through your lowpass filter.

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',fileReader.SampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',frameSize,...

 'Title','Original and Equalized Signal',...

2 Functions in Audio System Toolbox

2-50

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500

 originalSignal = step(fileReader);

 filteredSignal = step(myFilter,originalSignal,B,A);

 step(scope,[originalSignal(:,1),filteredSignal(:,1)]);

 play(deviceWriter,filteredSignal);

 count = count+1;

end

 designVarSlopeFilter

2-51

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff
frequency.

Fs = 48e3;

slope1 = 18;

slope2 = 36;

Fc = 4000/(Fs/2);

Design the filter coefficients using the specifed parameters.

2 Functions in Audio System Toolbox

2-52

[B1,A1] = designVarSlopeFilter(slope1,Fc,'hi');

[B2,A2] = designVarSlopeFilter(slope2,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];

SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,...

 'Fs',Fs,...

 'FrequencyScale','Log');

legend('slope = 18 dB/octave',...

 'slope = 36 dB/octave',...

 'Location','NorthWest')

 designVarSlopeFilter

2-53

Input Arguments

slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded.

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

2 Functions in Audio System Toolbox

2-54

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'— Lowpass filter
• 'hi'— Highpass filter

Output Arguments

B — Numerator filter coefficients
3-by-4 matrix

Numerator filter coefficients, returned as a 3-by-4 matrix. Each column of B corresponds
to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix

Denominator filter coefficients, returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your
cascaded IIR filter.

A does not include the leading unity coefficient for each section.

See Also
multibandParametricEQ | designParamEQ | designShelvingEQ

Introduced in R2016a

 disconnectMIDI

2-55

disconnectMIDI
Disconnect MIDI controls from audio plugin

Syntax

disconnectMIDI(myAudioPlugin)

Description

disconnectMIDI(myAudioPlugin) disconnects MIDI controls from your audio
plugin object, myAudioPlugin. Only those MIDI connections established using
configureMIDI are disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);

isempty(myMIDIConnections)

ans =

 1

Add MIDI connections using configureMIDI.

configureMIDI(echoPlugin,'Delay1');

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI
connections you configured are saved as a structure. View details of the MIDI
connections using dot notation.

2 Functions in Audio System Toolbox

2-56

myMIDIConnections = getMIDIConnections(echoPlugin);

myMIDIConnections.Delay1

ans =

 Law: 'lin'

 Min: 0

 Max: 1

 MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object
and your MIDI device.

disconnectMIDI(echoPlugin);

Get MIDI connections of echoPlugin and verify that you have successfully disconnected
MIDI controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);

isempty(myMIDIConnections)

ans =

 1

Input Arguments

myAudioPlugin — Audio plugin
object

Audio plugin, specified as an object that inherits from the audioPlugin class or the
audioPluginSource class.

More About
• “Musical Instrument Digital Interface (MIDI)”

See Also
audioPlugin | audioPluginSource | configureMIDI | getMIDIConnections |
midicallback | midicontrols | midiid | midiread | midisync

 disconnectMIDI

2-57

Introduced in R2016a

2 Functions in Audio System Toolbox

2-58

fdesign.audioweighting
Audio weighting filter specification object

Syntax
HAwf = fdesign.audioweighting

HAwf = fdesign.audioweighting(spec)

HAwf = fdesign.audioweighting(spec,specvalue1,specvalue2)

HAwf = fdesign.audioweighting(specvalue1,specvalue2)

HAwf = fdesign.audioweighting(...,Fs)

Description
Supported audio weighting filter types are: A weighting, C weighting, C-message, ITU-T
0.41, and ITU-R 468–4 weighting.

HAwf = fdesign.audioweighting constructs an audio weighting filter specification
object HAwf with a weighting type of A and a filter class of 1. Use the design
method to instantiate a dfilt object based on the specifications in HAwf. Use
designmethods to find valid filter design methods. Because the standards for audio
weighting filters are in Hz, normalized frequency specifications are not supported for
fdesign.audioweighting objects. The default sampling frequency for A weighting, C
weighting, C-message, and ITU-T 0.41 filters is 48 kHz. The default sampling frequency
for the ITU-R 468–4 filter is 80 kHz. If you invoke the normalizefreq method, a
warning is issued when you instantiate the dfilt object and the default sampling
frequencies in Hz are used.

HAwf = fdesign.audioweighting(spec) returns an audio weighting filter
specification object using default values for the specification string in spec. The
following are valid entries for spec. The entries are not case sensitive.

• 'WT,Class' (default spec)

The 'WT,Class' specification is valid for A weighting and C weighting filters of class
1 or 2.

The weighting type is specified by the string: 'A' or 'C'. The class is the scalar 1 or
2.

 fdesign.audioweighting

2-59

The default values for 'WT,Class' are 'A',1.
• 'WT'

The 'WT' specification is valid for C-message (default), ITU-T 0.41, and ITU-R 468–4
weighting filters.

The weighting type is specified by the string: 'Cmessage', 'ITUT041', or
'ITUR4684'.

HAwf = fdesign.audioweighting(spec,specvalue1,specvalue2) constructs an
audio weighting filter specification object HAwf and sets its specifications at construction
time.

HAwf = fdesign.audioweighting(specvalue1,specvalue2) constructs an audio
weighting filter specification object HAwf with the specification 'WT,Class' using the
values you provide. The valid weighting types are 'A' or 'C'.

HAwf = fdesign.audioweighting(...,Fs) specifies the sampling frequency in Hz.
The sampling frequency is a scalar trailing all other input arguments.

Input Arguments

Parameter Name/Value Pairs

'WT'

Weighting type

The weighting type defines the frequency response of the filter. The valid weighting types
are: A weighting, C weighting, C-message, ITU-T 0.41, and ITU-R 468–4 weighting. The
weighting types are described in “Definitions” on page 2-63.

'Class'

Filter Class

Filter class is only applicable for A weighting and C weighting filters. The filter class
describes the frequency-dependent tolerances specified in the relevant standards [1],

2 Functions in Audio System Toolbox

2-60

[2]. There are two possible class values: 1 and 2. Class 1 weighting filters have stricter
tolerances than class 2 filters. The filter class value does not affect the design. The class
value is only used to provide a specification mask in fvtool for the analysis of the filter
design.

Default: 1

Examples

Compare class 1 A weighting and ITU-R 468–4 filters between 0.1 and 12 kHz:

HawfA = fdesign.audioweighting('WT,Class','A',1,44.1e3);

% Sampling frequency is 44.1 kHz

HawfITUR = fdesign.audioweighting('WT','ITUR4684',44.1e3);

Afilter = design(HawfA);

ITURfilter = design(HawfITUR);

hfvt = fvtool([Afilter ITURfilter]);

axis([0.1 12 -80 20]);

legend(hfvt,'A-weighting','ITU-R 468-4');

 fdesign.audioweighting

2-61

Compare C-message and ITU-T 0.41 filters:

hCmessage = fdesign.audioweighting('WT','Cmessage',24e3);

hITUT = fdesign.audioweighting('WT','ITUT041',24e3);

dCmessage = design(hCmessage);

dITUT = design(hITUT);

hfvt = fvtool([dCmessage dITUT]);

legend(hfvt,'C-Message Weighting','ITU-T 0.41 Weighting');

axis([0.1 10 -50 5]);

2 Functions in Audio System Toolbox

2-62

Construct an ITU-R 468–4 filter using all available design methods:

HAwf = fdesign.audioweighting('WT','ITUR4684');

designmethods(HAwf)

% returns iirlpnorm,equiripple,freqsamp

D = design(HAwf,'all'); % returns all designs

hfvt = fvtool(D);

legend(hfvt,'Least P-norm IIR','FIR Equiripple',...,

'FIR Frequency Sampling')

 fdesign.audioweighting

2-63

More About

A weighting

The specifications for the A weighting filter are found in ANSI standard S1.42-2001.
The A weighting filter is based on the 40–phon Fletcher-Munson equal loudness contour
[3]. One phon is equal to one dB sound pressure level (SPL) at one kHz. The Fletcher-

2 Functions in Audio System Toolbox

2-64

Munson equal loudness contours are designed to account for frequency and level
dependent differences in the perceived loudness of tonal stimuli. The 40–phon contour
reflects the fact that the human auditory system is more sensitive to frequencies around
1–2 kHz than lower and higher frequencies. The filter roll off is more pronounced at
lower frequencies and more modest at higher frequencies. While A weighting is based on
the equal loudness contour for low-level (40–phon) tonal stimuli, it is commonly used in
the United States for assessing potential health risks associated with noise exposure to
narrowband and broadband stimuli at high levels.

C weighting

The specifications for the C weighting filter are found in ANSI standard S1.42-2001. The
C weighting filter approximates the 100–phon Fletcher-Munson equal loudness contour
for tonal stimuli. The C weighting magnitude response is essentially flat with 3–dB
frequencies at 31.5 Hz and 8000 Hz. While C weighting is not as common as A weighting,
sound level meters frequently have a C weighting filter option.

C-message

The specifications for the C–message weighting filter are found in Bell System Technical
Reference, PUB 41009. C-message weighting filters are designed for measuring the
impact of noise on telecommunications circuits used in speech transmission [6]. C-
message weighting filters are commonly used in North America, while the ITU-T 0.41
filter is more commonly used outside of North America.

ITU-R 468–4

The specifications for the ITU-R 486–4 weighting filter are found in the International
Telecommunication Union Recommendation ITU-R BS.468-4. ITU-R 486–4 is an equal
loudness contour weighting filter. Unlike the A weighting filter, the ITU-R 468–4 filter
describes subjective loudness judgements for broadband stimuli [4]. A common criticism
of the A weighting filter is that it underestimates the loudness judgement of real-world
stimuli particularly in the frequency band from about 1–9 kHz. A comparison of A
weighting and ITU-R 468–4 weighting curves shows that the ITU-R 468–4 curve applies
more gain between 1 and 10 kHz with a peak difference of approximately 12 dB around
6–7 kHz.

ITU-T 0.41

The specifications for the ITU-T 0.41 filter are found in the ITU-T Recommendation
0.41. ITU-T 0.41 weighting filters are designed for measuring the impact of noise on
telecommunications circuits used in speech transmission [5]. ITU-T 0.41 weighting filters

 fdesign.audioweighting

2-65

are commonly used outside of North America, while the C-message weighting filter is
more common in North America.
• “Audio Weighting Filters”
• “Design a Filter in Fdesign — Process Overview”

References

[1] American National Standard Design Response of Weighting Networks for Acoustical
Measurements, ANSI S1.42-2001, Acoustical Society of America, New York, NY,
2001.

[2] Electroacoustics Sound Level Meters Part 1: Specifications, IEC 61672-1, First Edition
2002-05.

[3] Fletcher, H. and W.A. Munson. “Loudness, its definition, measurement and
calculation.” Journal of the Acoustical Society of America, Vol. 5, 1933, pp. 82–
108.

[4] Measurement of Audio-Frequency Noise Voltage Level in Sound Broadcasting,
International Telecommunication Union Recommendation ITU-R BS.468-4, 1986.

[5] Psophometer for Use on Telephone-Type Circuits, ITU-T Recommendation 0.41.

[6] Transmission Parameters Affecting Voiceband Data Transmission-Measuring
Techniques, Bell System Technical Reference, PUB 41009, 1972.

See Also
design | designmethods | fdesign | fvtool

2 Functions in Audio System Toolbox

2-66

fdesign.octave

Octave filter specification

Syntax

d = fdesign.octave(l)

d = fdesign.octave(l, MASK)

d = fdesign.octave(l, MASK, spec)

d = fdesign.octave(..., Fs)

Description

d = fdesign.octave(l) constructs an octave filter specification object d, with l bands
per octave. The default value for l is one.

Note: The filters created by fdesign.octave comply with the ANSI® S1.11-2004 and
IEC 61260:1995 standards.

d = fdesign.octave(l, MASK) constructs an octave filter specification object d with
l bands per octave and MASK specification for the FVTool. The available values for mask
are:

• 'class 0'

• 'class 1'

• 'class 2'

d = fdesign.octave(l, MASK, spec) constructs an octave filter specification object
d with l bands per octave, MASK specification for the FVTool, and the spec specification
string. The specification strings available are:

• 'N, F0'

(not case sensitive), where:

 fdesign.octave

2-67

• N is the filter order
• F0 is the center frequency. The center frequency is specified in normalized frequency

units assuming a sampling frequency of 48 kHz, unless a sampling frequency in Hz
is included in the specification: d = fdesign.octave(..., Fs). If you specify an
invalid center frequency, a warning is issued and the center frequency is rounded
to the nearest valid value. You can determine the valid center frequencies for your
design by using validfrequencies with your octave filter specification object. For
example:

d = fdesign.octave(1,'Class 1','N,F0',6,1000,44.1e3);

validcenterfreq = validfrequencies(d);

Valid center frequencies:

• Must be greater than 20 Hz and less than 20 kHz if you specify a sampling
frequency. The range 20 Hz to 20 kHz is the standard range of human hearing.

• Are calculated according to the following algorithm if the number of bands per
octave, L, is even

G = 10^(3/10);

x = -1000:1350;

validcenterfreq = 1000*(G.^((2*x-59)/(2*L)));

validcenterfreq = validcenterfreq(validcenterfreq>20 & validcenterfreq<2e4);

Only center frequencies greater than 20 and less than 20000 are retained.
Choosing a center frequency greater than your Nyquist frequency (1/2 the
sampling rate) results in an error when you design the filter. If you do not specify
a sampling frequency, the remaining center frequencies are divided by 24000 to
obtain valid normalized center frequencies. For fdesign.octave, normalized
frequency assumes a sampling frequency of 48 kHz.

validcenterfreq = validcenterfreq/24000;

• Are calculated according to the following algorithm if the number of bands per
octave, L, is odd

G = 10^(3/10);

x = -1000:1350;

validcenterfreq = 1000*(G.^((x-30)/L));

validcenterfreq = validcenterfreq(validcenterfreq>20 & validcenterfreq<2e4);

Only center frequencies greater than 20 and less than 20000 are retained.
Choosing a center frequency greater than your Nyquist frequency (1/2 the
sampling rate) results in an error when you design the filter. If you do not
specify a sampling frequency, the remaining center frequencies are divided by

2 Functions in Audio System Toolbox

2-68

24000 to obtain valid normalized center frequencies. For fdesign.octave,
normalized frequency assumes a sampling frequency of 48 kHz.

validcenterfreq = validcenterfreq/24000;

Examples

Design an sixth order, octave-band class 0 filter with a center frequency of 1000 Hz and,
a sampling frequency of 44.1 kHz.

d = fdesign.octave(1,'Class 0','N,F0',6,1000,44100);

Hd = design(d);

fvtool(Hd)

The following figure shows the magnitude response plot of the filter. The logarithmic
scale for frequency is automatically set by FVTool for the octave filters.

 fdesign.octave

2-69

See Also
fdesign

2 Functions in Audio System Toolbox

2-70

fdesign.parameq
Parametric equalizer filter specification

Syntax

d = fdesign.parameq(spec, specvalue1, specvalue2, ...)

d = fdesign.parameq(... fs)

Description

d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a
parametric equalizer filter design object, where spec is a non-case sensitive specification
string. The choices for spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'

• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'

• 'N, F0, BW, Gref, G0, GBW'

• 'N, F0, BW, Gref, G0, GBW, Gp'

• 'N, F0, Fc, Qa, G0'

• 'N, F0, Fc, S, G0'

• 'N, F0 ,BW, Gref, G0, GBW, Gst'

• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'

• 'N, Flow, Fhigh, Gref, G0, GBW'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

• BW — Bandwidth
• BWp — Passband Bandwidth

 fdesign.parameq

2-71

• BWst — Stopband Bandwidth
• Gref — Reference Gain (decibels)
• G0 — Center Frequency Gain (decibels)
• GBW — Gain at which Bandwidth (BW) is measured (decibels)
• Gp — Passband Gain (decibels)
• Gst — Stopband Gain (decibels)
• N — Filter Order
• F0 — Center Frequency
• Fc— Cutoff frequency
• Fhigh - Higher Frequency at Gain GBW
• Flow - Lower Frequency at Gain GBW
• Qa-Quality Factor
• S-Slope Parameter for Shelving Filters

Regardless of the specification string chosen, there are some conditions that apply to the
specification parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst <

Gref

• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. Fs must be
specified as a scalar trailing the other numerical values provided, and is assumed to be in
Hz.

Examples

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB:

 d = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst',...

 4,.3,.5,0,-12,-10,-1);

 Hd = design(d,'cheby2');

 fvtool(Hd)

2 Functions in Audio System Toolbox

2-72

Design a 4th order audio lowpass (F0 = 0) shelving filter with cutoff frequency of Fc =
0.25, quality factor Qa =10, and boost gain of G0 = 8 dB:

d = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);

Hd = design(d);

fvtool(Hd)

 fdesign.parameq

2-73

Design 4th-order highpass shelving filters with S=1.5 and S=3:

N=4;

F0 = 1;

Fc = .4; % Cutoff Frequency

G0 = 10;

S = 1.5;

S2=3;

f = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S,G0);

2 Functions in Audio System Toolbox

2-74

h1 = design(f);

f.S=3;

h2=design(f);

hfvt=fvtool([h1 h2]);

set(hfvt,'Filters',[h1 h2]);

legend(hfvt,'S=1.5','S=3');

 fdesign.parameq

2-75

More About
• “Parametric Equalizer Design”

See Also
fdesign

2 Functions in Audio System Toolbox

2-76

generateAudioPlugin
Generate audio plugin from MATLAB class

Syntax

generateAudioPlugin className

generateAudioPlugin options className

Description

generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB
class specified by className. See “Supported Compilers” on page 2-78 for a list of
compilers supported by generateAudioPlugin.

generateAudioPlugin options className specifies nondefault output folder,
plugin name, or file type. Options can be specified in any grouping, and in any order.

The extension of your generated plugin depends on your operating system.

Operating System File Extension

Windows .dll

OSX .vst

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

A VST 2 plugin named Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin

generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

 generateAudioPlugin

2-77

A VST 2 plugin named Echo is saved to your specified folder. The extension of your
plugin depends on your operating system.

Specify File Name of Generated Plugin

generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

A VST 2 plugin named awesomeEffect is saved to your current folder. The extension of
your plugin depends on your operating system.

Specify Output Folder and File Name of Generated Plugin

generateAudioPlugin -output awesomeEffect -outdir myPluginFolder audiopluginexample.Echo

A VST 2 plugin named awesomeEffect is saved to your specified folder. The extension
of your plugin depends on your operating system.

Generate win32 Plugin from win64 System

generateAudioPlugin -win32 audiopluginexample.Echo

A 32-bit VST 2 plugin named Echo.dll is saved to your current folder.

Input Arguments

options — Options to specify output folder, plugin name, and file type
-outdir folder | -output pluginName | -win32

Options can be specified in any grouping, and in any order.

Option Description

-outdir folder Generates a plugin to a specific folder. By default, the
generated plugin is placed in the current folder. If
folder is not in the current directory, specify the exact
path.

-output pluginName Specifies the file name of the generated plugin. The
appropriate extension is appended to the pluginName
based on the platform on which the plugin is generated.
By default, the plugin is named after the class.

-win32 Creates a 32-bit audio plugin. Valid only on win64.

2 Functions in Audio System Toolbox

2-78

className — Name of the plugin class to generate
plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It
must derive from either the audioPlugin class or the audioPluginSource class.

Note: className is not the name of a file. Arguments such as 'myPlugin.m' issue an
error.

More About

Supported Compilers

Compilers supported by generateAudioPlugin.

Operating System Supported Compilers

win64 Microsoft Visual C++ 2013 Professional

Microsoft Visual C++ 2012 Professional

Microsoft Visual C++ 2010 Professional
SP1

maci64 Xcode 6.2

• “Export a MATLAB Plugin to a DAW”

See Also
audioPlugin | audioPluginSource | Audio Test Bench | validateAudioPlugin

Introduced in R2016a

 getMIDIConnections

2-79

getMIDIConnections
Get MIDI connections of audio plugin

Syntax

connectionInfo = getMIDIConnections(myAudioPlugin)

Description

connectionInfo = getMIDIConnections(myAudioPlugin) returns a structure,
connectionInfo, containing information about the MIDI connections for your
audio plugin, myAudioPlugin. Only those MIDI connections established using
configureMIDI are returned.

The connectionInfo structure contains a substructure for each tunable property of
myAudioPlugin that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls
on the default MIDI device.

configureMIDI(echoEffect,'Delay1',1001);

configureMIDI(echoEffect,'Gain1' ,1002);

configureMIDI(echoEffect,'Delay2',1003);

configureMIDI(echoEffect,'Gain2' ,1004);

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

2 Functions in Audio System Toolbox

2-80

connectionInfo =

 Delay1: [1x1 struct]

 Gain1: [1x1 struct]

 Delay2: [1x1 struct]

 Gain2: [1x1 struct]

View details of the Delay1 MIDI connection using dot notation.

connectionInfo.Delay1

ans =

 Law: 'lin'

 Min: 0

 Max: 1

 MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments

myAudioPlugin — Audio plugin
object

Audio plugin, specified as an object that inherits from the audioPlugin class.

Output Arguments

connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and
MIDI devices, returned as a structure. Only those MIDI connections established
using configureMIDI are returned. The connectionInfo structure contains a
substructure for each established MIDI connection. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

More About
• “Musical Instrument Digital Interface (MIDI)”

 getMIDIConnections

2-81

See Also
audioPlugin | audioPluginSource | configureMIDI | disconnectMIDI |
midicallback | midicontrols | midiid | midiread | midisync

Introduced in R2016a

2 Functions in Audio System Toolbox

2-82

midicallback
Call function handle when MIDI controls change value

Syntax

oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)

oldFunctionHandle = midicallback(midicontrolsObject,[])

currentFunctionHandle = midicallback(midicontrolsObject)

Description

oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)

sets functionHandle as the function handle called when midicontrolsObject
changes value, and returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the
function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the
current function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous
function with your MIDI controls object, mc.

mc = midicontrols;

midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on
the command line.

 0.5079

 midicallback

2-83

 0.5000

 0.4921

 0.4841

 0.4762

 0.4683

 0.4603

 0.4683

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control.
Make the axis constant.

axis([0,2*pi,-1,1]);

axis manual

hold on

sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

2 Functions in Audio System Toolbox

2-84

Use the midicallback function to associate your sinePlotter function with the
control specified by your midicontrolsObject. Move your specified MIDI control. The
plot updates automatically with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

 midicallback

2-85

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use
midicallback to associate your MIDI control object with the function you created.
Verify that your object is associated with your function.

displayControlValue = @(object) disp(midiread(object));

midicallback(midicontrolsObject,displayControlValue);

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

2 Functions in Audio System Toolbox

2-86

 @(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on
the command line.

 0.3095

 0.4603

 0.6746

 0.7381

 0.8175

 0.8571

 0.9048

Define an anonymous function to print the current value of the MIDI control rounded to
two significant digits. Use midicallback to associate your MIDI controls object with the
function you created. Return the old function handle.

displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));

oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =

 @(object)disp(midiread(object))

Move a control to display its current normalized value rounded to two significant digits.

0.91

0.83

0.67

0.49

0.29

0.18

0.05

Remove the association between the object and the function. Return the old function
handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

 midicallback

2-87

oldFunctionHandle =

 @(object)fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 []

Associate a Function with MIDI Controls

Define this function and save it to your current folder.

function plotSine(midicontrolsObject)

frequency = midiread(midicontrolsObject);

x = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);

plot(x,sinusoid)

axis([0,10,-1.1,1.1]);

ylabel('Amplitude');

xlabel('Time (s)');

title('Sine Plot')

legend(sprintf('Frequency = %0.2f Hz',frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function.
Use midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency
updates when you move MIDI controls.

midicontrolsObject = midicontrols;

plotSineHandle = @plotSine;

midicallback(midicontrolsObject,plotSineHandle);

2 Functions in Audio System Toolbox

2-88

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

functionHandle — New function handle
function handle

New function handle, specified as a function handle that contains one input argument.
The new function handle is called when midicontrolsObject changes value. For
information on what function handles are, see “Function Handles”.

 midicallback

2-89

Output Arguments

oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function
handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function
handle.

More About
• “Musical Instrument Digital Interface (MIDI)”

See Also
configureMIDI | disconnectMIDI | getMIDIConnections | midicontrols |
midiid | midiread | midisync | setpref

2 Functions in Audio System Toolbox

2-90

midicontrols

Open group of MIDI controls for reading

Syntax

midicontrolsObject = midicontrols

midicontrolsObject = midicontrols(controlNumbers)

midicontrolsObject = midicontrols(controlNumbers,initialValues)

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)

midicontrolsObject = midicontrols(___ ,'OutputMode',mode)

Description

midicontrolsObject = midicontrols returns an object that listens to all controls
on your default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If
you call midiread before a control is moved, midiread returns the initial value of your
midicontrols object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls
specified by controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues)

specifies initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)

specifies the MIDI device your midicontrols object listens to, using any of the previous
syntaxes.

midicontrolsObject = midicontrols(___ ,'OutputMode',mode) specifies
the range of values returned by midiread and accepted as initialValues for
midicontrols and as controlValues for midisync.

 midicontrols

2-91

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols

midiread(midicontrolsObject)

midicontrolsObject =

midicontrols object: any control on 'BCF2000'

ans =

 0

Move any control on your MIDI device. Use midiread to return the most recent value of
the last control moved.

midiread(midicontrolsObject)

ans =

 0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

midicontrolsObject = midiread(midicontrolsObject);

2 Functions in Audio System Toolbox

2-92

ans =

 0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumber1,~] = midiid;

[controlNumber2,~] = midiid;

[controlNumber3,~] = midiid;

[controlNumber4,~] = midiid;

controlNumbers = [controlNumber1,controlNumber3;...

 controlNumber2,controlNumber4]

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlNumbers =

 1081 1085

 1082 1087

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 0.5;

midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

ans =

 0.0873 0.5000

 midicontrols

2-93

 0.5000 0.5000

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

[controlNumber1,~] = midiid;

[controlNumber2,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2];

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 12;

midicontrolsObject = midicontrols(controlNumbers,initialValue,'OutputMode','rawmidi');

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

ans =

 63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the
MATLAB command line:

setpref midi DefaultDevice BCF2000

This preference persists across MATLAB sessions. You do not need to set it again unless
you want to change your default device.

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with
identification number 1001. Create a midicontrols object, which listens to control
number 1001 on your Behringer BCF2000 device.

2 Functions in Audio System Toolbox

2-94

midicontrolsObject = midicontrols(1001,'MIDIDevice','BCF2000');

Input Arguments

controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid
to interactively identify the control numbers of your device. See “MIDI Device Control
Numbers” on page 2-96 for an advanced explanation of how controlNumbers are
determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object
responds to any control on your MIDI device.
Example: 1081

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as
controlNumbers. If you specify initialValues as a scalar, all controls specified by
controlNumbers are assigned that value.

The value associated with your MIDI controls cannot be determined until you move a
MIDI control. If you specify an initial value associated with your MIDI control, the initial
value is returned by the midiread function until the MIDI control is moved.

• If OutputMode is specified as 'normalized', then initial values must be in the
range [0,1]. Actual initial values are quantized and can be slightly different from
initial values specified when your midicontrols object is created.

• If OutputMode is specified as ‘rawmidi’, then initial values must be integers in the
range [0,127]

Example: 0.3

Example: [0,0.3,0.6]

 midicontrols

2-95

Example: 5

Example: [5;15;20]

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

deviceName — MIDI device name
string

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a string. The specified deviceName can be a substring of the exact name of
your device. If you do not specify deviceName, the default MIDI device is used. See “Set
the Default MIDI Device” on page 2-93 for an example of specifying a default MIDI
device.

If you do not set a default MIDI device, the host operating system chooses the default
device in an unspecified way. As a best practice, use midiid to identify the name of the
device you want.
Example: 'MIDIDevice','BCF2000 MIDI 1'

Data Types: char

mode — Output mode for MIDI control value
'normalized' (default) | 'rawmidi'

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

• 'normalized' — Values of your MIDI control are normalized. If your
midicontrols object is called by midiread, then values in the range [0,1] are
returned.

• 'rawmidi' — Values of your MIDI control are not normalized. If your
midicontrols object is called by midiread, then integer values in the range [0,127]
are returned.

Example: 'OutputMode','normalized'

Example: 'OutputMode','rawmidi'

Data Types: char

2 Functions in Audio System Toolbox

2-96

Output Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

More About

MIDI Device Control Numbers

MATLAB defines MIDI device control numbers as (MIDI Channel Number) × 1000 +
(MIDI Controller Number).

• MIDI Channel Number is the transmission channel that your device uses to send
messages. This value is in the range 1–16.

• MIDI Controller Number is a number assigned to an individual control on your MIDI
device. This value is in the range 1–127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller
Number.
• “Musical Instrument Digital Interface (MIDI)”

See Also
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiid | midiread | midisync | setpref

 midiid

2-97

midiid
Interactively identify MIDI control

Syntax

[controlNumber,deviceName] = midiid

Description

[controlNumber,deviceName] = midiid returns the control number and device
name of the MIDI control you move. Call the function and then move the control you
want to identify. The function detects which control you move and returns the control
number and device name that specify that control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want
to identify.

[ctl,dev] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message...

ctl =

1002

dev =

nanoKONTROL

Output Arguments

controlNumber — MIDI device control number
integer

2 Functions in Audio System Toolbox

2-98

MIDI device control number, specified as an integer. The device manufacturer assigns
the value to the control for identification purposes.

deviceName — MIDI device name
string

MIDI device name assigned by the device manufacturer or host operating system,
specified as a string.

See Also
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiread | midisync | setpref

 midiread

2-99

midiread
Return most recent value of MIDI controls

Syntax

controlValues = midiread(midicontrolsObject)

Description

controlValues = midiread(midicontrolsObject) returns the most recent value
of the MIDI controls associated with the specified midicontrolsObject. To create this
object, use the midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;

controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

[controlOne,~] = midiid

[controlTwo,~] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

controlOne =

 1081

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

2 Functions in Audio System Toolbox

2-100

controlTwo =

 1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwo];

midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a
vector that corresponds to your control numbers vector, controlNumbers.

tic

while toc < 5

 controlValues = midiread(midicontrolsObject)

end

controlValues =

 0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object
cannot be determined until you move the MIDI control. Specify an initial value
associated with your MIDI control. The midiread function returns the initial value until
the MIDI control is moved.

initialControlValue = 1;

midicontrolsObject = midicontrols(controlNumber,initialControlValue);

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');

deviceWriter = audioDeviceWriter(...

 midiread

2-101

 'SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by
the control on your MIDI device, and then write the frame to your audio output device.
By default, the control value returned by midiread is normalized.

while ~isDone(fileReader)

 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;

 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);

end

Close the input file and release your output device.

release(fileReader);

release(deviceWriter);

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

Output Arguments

controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0,127]

Most recent values of MIDI controls, returned as normalized values in the range
[0,1], or as integer values in the range [0,127]. The output values depend on the
OutputMode specified when your midicontrols object is created.

• If OutputMode was specified as 'normalized', then midiread returns values in
the range [0,1]. The default OutputMode is 'normalized'.

2 Functions in Audio System Toolbox

2-102

• If OutputMode was specified as 'rawmidi', then midiread returns integer values
in the range [0,127], and no quantization is required.

More About
• “Musical Instrument Digital Interface (MIDI)”

See Also
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midisync | setpref

 midisync

2-103

midisync

Send values to MIDI controls for synchronization

Syntax

midisync(midicontrolsObject)

midisync(midicontrolsObject,controlValues)

Description

midisync(midicontrolsObject) sends the initial values of controls to your
MIDI device, as specified by your MIDI controls object. To create this object, use the
midicontrols function. If your MIDI device can receive and respond to messages, it
adjusts its controls as specified.

Note: Many MIDI devices are not bidirectional. Calling midisync with a unidirectional
device has no effect. midisync cannot tell whether a value is successfully sent to a
device or even whether the device is bidirectional. If sending a value fails, no errors or
warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the
MIDI controls associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value

Use midiid to identify a control on your default MIDI device.

[controlNumber,~] = midiid;

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

2 Functions in Audio System Toolbox

2-104

Create a MIDI controls object. Specify an initial value for your control. Call midisync to
set the specified control on your device to the initial value.

initialValue = 0.5;

midicontrolsObject = midicontrols(controlNumber,initialValue);

midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumber1,~] = midiid;

[controlNumber2,~] = midiid;

[controlNumber3,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2,controlNumber3];

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to
set the specified control on your device to the initial value.

controlValues = [0,0,1];

midicontrolsObject = midicontrols(controlNumbers,controlValues);

midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the
physical controls on your device.

for i = 1:100

 controlValues = controlValues + [0.006,0.008,-0.008];

 midisync(midicontrolsObject,controlValues);

 pause(0.1)

end

Create UI Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

function trivialmidigui(controlNumber,deviceName)

 midisync

2-105

 slider = uicontrol('Style','slider');

 mc = midicontrols(controlNumber,'MIDIDevice',deviceName);

 midisync(mc);

 set(slider,'Callback',@slidercb);

 midicallback(mc, @mccb);

 function slidercb(slider,~)

 val = get(slider,'Value');

 midisync(mc, val);

 disp(val);

 end

 function mccb(mc)

 val = midiread(mc);

 set(slider,'Value',val);

 disp(val);

 end

end

Use midiid to identify a control number and device name. Call the function you created,
specifying the control number and device name as inputs.

[controlNumber,deviceName] = midiid;

trivialmidigui(controlNumber,deviceName)

The slider on the user interface is synchronized with the specified control on your device.
Move one to see the other respond.

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

Values sent to MIDI device, specified as a scalar or an array the same size as
controlNumbers of the associated midicontrols object. If you do not specify

2 Functions in Audio System Toolbox

2-106

controlValues, the default value is the initialValues of the associated
midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

• If OutputMode is specified as 'normalized', then controlValues must consist of
values in the range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode is specified as 'rawmidi', then controlValues must consist of
integer values in the range [0,127].

Example: 0.3

Example: [0,0.3,0.6]

Example: 5

Example: [5;15;20]

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

More About
• “Musical Instrument Digital Interface (MIDI)”

See Also
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midiread | setpref

 validateAudioPlugin

2-107

validateAudioPlugin
Test MATLAB source code for audio plugin

Syntax

validateAudioPlugin pluginClass

validateAudioPlugin options pluginClass

Description

validateAudioPlugin pluginClass generates and runs a “Test Bench Procedure” on
page 2-109 that exercises your audio plugin class.

validateAudioPlugin options pluginClass specifies options to modify the default
“Test Bench Procedure” on page 2-109.

If you use the -keeptestbench option, or if an error occurs during validation, the test
bench files are saved to your current folder.

Output File Name Output File Type Output File Name With File Extension

testbench_myClassNameMATLAB testbench_myClassName.m

testbench_myClassName_mexMEX testbench_myClassName_mex.mexw64

The MEX-file extension depends on your
operating system.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

2 Functions in Audio System Toolbox

2-108

Running testbench... passed.

Generating mex file 'testbench_Echo_mex.mexw64'... done.

Running mex testbench... passed.

Deleting testbench.

Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

Running testbench... passed.

Skipping mex.

Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

Running testbench... passed.

Generating mex file 'testbench_Echo_mex.mexw64'... done.

Running mex testbench... passed.

Keeping testbench.

Ready to generate audio plug-in.

Two test benches are saved to your current folder:

• testbench_Echo.m

• testbench_Echo_mex.mexw64

Skip MEX Version and Keep Test Bench

validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.

Generating testbench file 'testbench_Echo.m'... done.

Running testbench... passed.

Skipping mex.

Keeping testbench.

One test bench is saved to your current folder:

 validateAudioPlugin

2-109

• testbench_Echo.m

Input Arguments

options — Options to modify test bench procedure
-nomex | -keeptestbench

Options to modify test bench procedure, specified as -nomex or -keeptestbench.
Options can be specified together or separately, and in any order.

• -nomex — validateAudioPlugin does not generate and run a MEX version of the
test bench file. This option significantly reduces run time of the test bench procedure.

• -keeptestbench — validateAudioPlugin saves the generated test benches to the
current folder.

pluginClass — Name of the plugin class to validate
plugin class

Name of the plugin class to validate. The plugin class must derive from either the
audioPlugin class or the audioPluginSource class. The validateAudioPlugin function
exercises an instance of the specified plugin class.

Limitations

The valdiateAudioPlugin function is compatible with Windows and Mac operating
systems. It is not compatible with Linux.

More About

Test Bench Procedure

The valudateAudioPlugin function uses dynamic testing to find common
audio plugin programming mistakes not found by the static checks performed by
generateAudioPlugin. The function:

1 Runs a subset of error checks performed by generateAudioPlugin.
2 Generates and runs a MATLAB test bench to exercise the class.

2 Functions in Audio System Toolbox

2-110

3 Generates and runs a MEX version of the test bench.
4 Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin,
step through the saved generated test bench.

See Also

Functions
generateAudioPlugin

Classes
audioPlugin | audioPluginSource

Introduced in R2016a

3

System objects in Audio System
Toolbox

3 System objects in Audio System Toolbox

3-2

audioDeviceReader System object

Record from sound card

Description

The audioDeviceReader System object reads audio samples using your computer’s
audio device. See “Audio Device Reader System Interaction” on page 3-12 for a
visualization of how the audioDeviceReader acquires data.

To stream data from an audio device:

1 Define and set up your audio device reader. See “Construction” on page 3-2.
2 Call step or record to stream data from your audio device.

Construction

aDR = audioDeviceReader returns a System object, aDR, that reads audio samples
using an audio input device in real time.

aDR = audioDeviceReader(sampleRateValue) sets the SampleRate property to
sampleRateValue.

aDR = audioDeviceReader(sampleRateValue,samplesPerFrameValue) sets the
SamplesPerFrame property to samplesPerFrameValue.

aDR = audioDeviceReader(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: aDR = audioDeviceReader(12000,'BitDepth','8-bit integer')
creates a System object, aDR, with the SampleRate property set to 12000 and the
BitDepth property set to '8-bit integer'.

Properties

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO'

 audioDeviceReader System object

3-3

Driver used to access your audio device, specified as 'DirectSound' or 'ASIO'. ASIO
drivers do not come pre-installed on Windows machines. You must install an ASIO driver
outside of MATLAB to use the 'ASIO' driver option.

Note: If Driver is specified as 'ASIO', open the ASIO UI outside of MATLAB to set the
sound card buffer size to the SamplesPerFrame value of your audioDeviceReader
System object. See your ASIO driver documentation for more information.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

Device — Device used to acquire audio samples
default audio device (default) | string

Device used to acquire audio samples, specified as a string. Use the getAudioDevices
method to list available devices.

NumChannels — Number of input channels acquired by audio device
1 (default) | integer

Number of input channels acquired by audio device, specified as an integer. The range of
NumChannels depends on your audio hardware.

This property is available when you set ChannelMappingSource to 'Auto'.

SamplesPerFrame — Frame size read from audio device
1024 (default) | integer

Frame size read from audio device, specified as a positive integer. SamplesPerFrame
is also the size of your device buffer, and the number of columns of the output matrix
returned when calling step or record on audioDeviceReader.

SampleRate — Sample rate used by device to acquire audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to acquire audio data, in Hz, specified as a positive integer.
The range of SampleRate depends on your audio hardware.

BitDepth — Data type used by device to acquire audio data
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
float'

3 System objects in Audio System Toolbox

3-4

Data type used by device to acquire audio data, specified as a string.

ChannelMappingSource — Source of mapping between channels of input device and
columns of output matrix
'Auto' (default) | 'Property'

Source of mapping between the channels of your audio input device and columns of the
output matrix, specified as 'Auto' or 'Property'.

• 'Auto' — The default settings determine the mapping between device channels
and output matrix. For example, suppose that your audio device has six channels
available, and you set NumChannels to 6. The output from a call to step or record
is a six-column matrix. Column 1 corresponds with channel 1, column 2 corresponds
with channel 2, and so on.

• 'Property' — The ChannelMapping property determines mapping between
channels of your audio device and columns of the output matrix.

ChannelMapping — Nondefault mapping between channels of input device and columns of
output matrix
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault mapping between channels of your audio input device and columns of the
output matrix, specified as a vector of valid channel indices. See the “Specify Channel
Mapping for audioDeviceReader” on page 3-9 example for more information.

This property is available when you set ChannelMappingSource to 'Property'.

OutputDataType — Data type of the output
'double' (default) | 'single' | 'int32' | 'int16' | 'uint8'

Data type of the output, specified as a string.

Note: If OutputDataType is specified as 'double' or 'single', the audio device
reader outputs data in the range [–1, 1]. For other data types, the range is [min, max] of
the specified data type.

Methods
clone Create copy of System object with same

property values

 audioDeviceReader System object

3-5

getAudioDevices List available audio input devices
info Get information about selected device
isLocked Locked status for input attributes and

nontunable properties
record Stream audio data from input device
release Enable property values and input

characteristics to change
step Stream audio data from input device

Examples

Read from Microphone and Write to Audio File

Record ten seconds of speech with a microphone and send the output to a .wav file.

Create an audioDeviceReader System object™ with default settings. Call setup to
reduce the computational load of initialization in an audio stream loop.

deviceReader = audioDeviceReader;

setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter(...

 'mySpeech.wav',...

 'FileFormat','WAV');

Record 10 seconds of speech. In an audio stream loop, read an audio signal frame from
the device, and write the audio signal frame to a specified file. The file saves to your
current folder.

disp('Speak into microphone now.');

tic;

while toc < 10

 acquiredAudio = record(deviceReader);

 step(fileWriter, acquiredAudio);

end

disp('Recording complete.');

Speak into microphone now.

3 System objects in Audio System Toolbox

3-6

Recording complete.

Release the audio device and close the output file.

release(deviceReader);

release(fileWriter);

Reduce Latency Due to Input Device Buffer

Latency due to the input device buffer is the time delay of acquiring one frame of data.
In this example, you modify default properties of your audioDeviceReader System
object™ to reduce latency.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader

deviceReader =

 System: audioDeviceReader

 Properties:

 Driver: 'DirectSound'

 Device: 'Default'

 NumChannels: 1

 SamplesPerFrame: 1024

 SampleRate: 44100

 Advanced properties:

 BitDepth: '16-bit integer'

 ChannelMappingSource: 'Auto'

 OutputDataType: 'double'

Calculate the latency due to your device buffer.

fprintf('Latency due to device buffer: %f seconds.\n',...

 deviceReader.SamplesPerFrame/deviceReader.SampleRate);

Latency due to device buffer: 0.023220 seconds.

Set the SamplesPerFrame property of your audioDeviceReader System object to 64.
Calculate the latency.

 audioDeviceReader System object

3-7

deviceReader.SamplesPerFrame = 64;

fprintf('Latency due to device buffer: %f seconds.\n',...

 deviceReader.SamplesPerFrame/deviceReader.SampleRate);

Latency due to device buffer: 0.001451 seconds.

Set the SampleRate property of your audioDeviceReader System object to 96,000.
Calculate the latency.

deviceReader.SampleRate = 96000;

fprintf('Latency due to device buffer: %f seconds.\n',...

 deviceReader.SamplesPerFrame/deviceReader.SampleRate);

Latency due to device buffer: 0.000667 seconds.

Determine and Decrease Overrun

Overrun refers to input signal drops, which occur when the audio stream loop does
not keep pace with the device. Determine overrun of an audio stream loop, add an
artificial computational load to the audio stream loop, and then modify properties of your
audioDeviceReader System object™ to decrease overrun. Your results depend on your
computer.

Create an audioDeviceReader System object with SamplesPerFrame set to 256 and
SampleRate set to 44,100. Call setup to reduce the computational load of initialization
in an audio stream loop.

deviceReader = audioDeviceReader(...

 'SamplesPerFrame',256,...

 'SampleRate',44100);

setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter(...

 'mySpeech.wav',...

 'FileFormat','WAV');

Record 5 seconds of speech. In an audio stream loop, read an audio signal frame from
your device, and write the audio signal frame to a specified file.

totalOverrun = 0;

disp('Speak into microphone now.');

tic;

3 System objects in Audio System Toolbox

3-8

while toc < 5

 [input,numOverrun] = record(deviceReader);

 totalOverrun = totalOverrun + numOverrun;

 step(fileWriter, input);

end

fprintf('Recording complete.\n')

fprintf('Total number of samples overrun: %d.\n',...

 totalOverrun);

fprintf('Total seconds overrun: %d.\n',...

 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.

Recording complete.

Total number of samples overrun: 0.

Total seconds overrun: 0.

Release your audioDeviceReader and dsp.AudioDeviceWriter System objects and
zero your counter variable.

release(fileWriter);

release(deviceReader);

totalOverrun = 0;

Add an artificial computational load to your audio stream loop. The computational load
causes the audio stream loop to go slower than the device, which causes acquired samples
to be dropped.

disp('Speak into microphone now.');

tic;

while toc < 5

 [input,numOverrun] = record(deviceReader);

 totalOverrun = totalOverrun + numOverrun;

 step(fileWriter, input);

 for m=1:200000

 n = sqrt(m);

 end

end

fprintf('Recording complete.\n')

fprintf('Total number of samples overrun: %d.\n',...

 totalOverrun);

fprintf('Total seconds overrun: %d.\n',...

 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.

Recording complete.

 audioDeviceReader System object

3-9

Total number of samples overrun: 0.

Total seconds overrun: 0.

Release your audioDeviceReader and dsp.AudioFileWriter System objects, and set
the SamplePerFrame property to 512. The device buffer size increases so that the device
now takes longer to acquire a frame of data. Set your counter variable to zero.

release(fileWriter);

release(deviceReader);

deviceReader.SamplesPerFrame = 512;

totalOverrun = 0;

Calculate the total overrun of the audio stream loop using your modified
SamplesPerFrame property.

disp('Speak into microphone now.');

tic;

while toc < 5

 [input,numOverrun] = record(deviceReader);

 totalOverrun = totalOverrun + numOverrun;

 step(fileWriter, input);

 for m=1:200000

 n = sqrt(m);

 end

end

fprintf('Recording complete.\n')

fprintf('Total number of samples overrun: %d.\n',...

 totalOverrun);

fprintf('Total seconds overrun: %f.\n',...

 totalOverrun/deviceReader.SampleRate);

Speak into microphone now.

Recording complete.

Total number of samples overrun: 0.

Total seconds overrun: 0.000000.

Specify Channel Mapping for audioDeviceReader

Specify non-default channel mapping for an audioDeviceReader System object™. This
example is hardware specific. It assumes that your computer has a default audio input
device with two available channels.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader;

3 System objects in Audio System Toolbox

3-10

The default number of channels is 1. Call the step method or record method of your
audioDeviceReader System object to read one frame of data from your audio device.
Verify that the output data matrix has one column.

x = step(deviceReader);

[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 1

Use info to determine the maximum number of input channels available with your
specified Driver and Device configuration.

info(deviceReader)

ans =

 Driver: 'DirectSound'

 DeviceName: 'Primary Sound Capture Driver'

 MaximumInputChannels: 2

Set ChannelMappingSource to 'Property'. The audioDeviceReader System object
must be unlocked to change this property.

release(deviceReader);

deviceReader.ChannelMappingSource = 'Property'

deviceReader =

 System: audioDeviceReader

 Properties:

 Driver: 'DirectSound'

 Device: 'Default'

 audioDeviceReader System object

3-11

 SamplesPerFrame: 1024

 SampleRate: 44100

 Advanced properties:

 BitDepth: '16-bit integer'

 ChannelMappingSource: 'Property'

 ChannelMapping: [1 2]

 OutputDataType: 'double'

By default, if ChannelMappingSource is set to 'Property', all available channels
are mapped to the output. Call the step method or record method of your
audioDeviceReader System object to read one frame of data from your audio device.
Verify that the output data matrix has two columns.

x = step(deviceReader);

[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 2

Use the ChannelMapping property to specify an alternative mapping between channels
of your device and columns of the output matrix. Indicate the input channel number at
an index corresponding to the output column. To change this property, first unlock the
audioDeviceReader System object.

release(deviceReader);

deviceReader.ChannelMapping = [2,1];

If you call step or record:

• Input channel 1 of your device maps to the second column of your output matrix.
• Input channel 2 of your device maps to the first column of your output matrix.

Acquire a specific channel from your input device.

3 System objects in Audio System Toolbox

3-12

deviceReader.ChannelMapping = 2;

If you call step or record, input channel 2 of your device maps to an output vector.

More About

Audio Device Reader System Interaction

The audio device reader specifies the driver, the device and its attributes, and the data
type and size output from your System object.

Run an Executable Outside MATLAB

The generated code for the audioDeviceReader System object relies on prebuilt
dynamic library files that ship with MATLAB. You must account for these extra library
files when you run audioDeviceReader outside the MATLAB environment. To run a
standalone executable generated from code containing the audioDeviceReader System
object, set your system environment using the commands specific to your platform.

Platform Command

Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (Bash)

 audioDeviceReader System object

3-13

Platform Command

Linux setenv LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;

%PATH%

See Also
audioDeviceWriter | dsp.AudioFileReader | Audio Device Reader

More About
• “Audio I/O: Buffering, Latency, and Throughput”
• “Real-Time Audio in MATLAB”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-14

clone
System object: audioDeviceReader

Create copy of System object with same property values

Syntax

aDRclone = clone(aDR)

Description

aDRclone = clone(aDR) creates an audio device reader System object, aDRclone,
with the same property values as aDR. If the original object is locked, then clone creates
a copy that is also locked. This copy has states initialized to the same values as the
original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

 getAudioDevices

3-15

getAudioDevices
System object: audioDeviceReader

List available audio input devices

Syntax

devices = getAudioDevices(aDR)

Description

devices = getAudioDevices(aDR) returns a cell array listing available audio input
devices. The list of available input devices depends on the specified Driver property of
your audioDeviceReader object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-16

info
System object: audioDeviceReader

Get information about selected device

Syntax

aDRInfo = info(aDR)

Description

aDRInfo = info(aDR) returns a structure containing information about your
audioDeviceReader System object. The structure contains information about the
driver, device, and maximum number of input channels for your audioDeviceReader
System object.

Introduced in R2016a

 isLocked

3-17

isLocked
System object: audioDeviceReader

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(aDR)

Description

L = isLocked(aDR) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the audio device reader, aDR.

The aDR object performs an internal initialization the first time you execute step or
record. The initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. After the object is locked,
the isLocked method returns a true value.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-18

record
System object: audioDeviceReader

Stream audio data from input device

Syntax

[x,numOverrun] = record(aDR)

Description

[x,numOverrun] = record(aDR) reads one frame of audio samples from the selected
audio input device and returns the number of samples by which the audio device reader’s
queue was overrun since the last call to record.

When you call the record method of an audioDeviceReader System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceReader at a time. Call the release method of the
audioDeviceReader System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
record. This initialization locks nontunable properties and input specifications,
such as the dimensions, complexity, and data type of the input data. If you change a
nontunable property or an input specification, the System object issues an error. To
change nontunable properties or inputs, you must first call the release method to
unlock the object.

Introduced in R2016a

 release

3-19

release
System object: audioDeviceReader

Enable property values and input characteristics to change

Syntax

release(aDR)

Description

release(aDR) releases system resources, such as memory, from your audio device
reader, aDR. After you call release, all properties and input characteristics of aDR can
change.

Note: Once you call release on a System object, subsequent calls to setup, step,
record, reset, or release do not support code generation.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-20

step
System object: audioDeviceReader

Stream audio data from input device

Syntax

[x,numOverrun] = step(aDR)

Description

[x,numOverrun] = step(aDR) reads one frame of audio samples from the selected
audio input device and returns the number of samples by which the audio device reader’s
queue was overrun since the last call to step.

When you call the step method of an audioDeviceReader System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceReader at a time. Call the release method of the
audioDeviceReader System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

 audioDeviceWriter System object

3-21

audioDeviceWriter System object

Play to sound card

Description

The audioDeviceWriter System object writes audio samples to an audio output device.
See “Audio Device Writer System Interaction” on page 3-30 for a visualization of how
the audioDeviceWriter System object plays audio samples.

To stream data to an audio device:

1 Define and set up your audio device writer. See “Construction” on page 3-21.
2 Call step or play to stream data to an audio device.

Construction

aDW = audioDeviceWriter returns a System object, aDW that writes audio samples to
an audio output device in real time.

aDW = audioDeviceWriter(sampleRateValue) sets the SampleRate property to
sampleRateValue.

aDW = audioDeviceWriter(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: aDW = audioDeviceWriter(12000,'BitDepth','8-bit integer')
creates a System object, aDW, with the SampleRate property set to 12000 and the
BitDepth property set to '8-bit integer'.

Properties

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO'

3 System objects in Audio System Toolbox

3-22

Driver used to access your audio device, specified as 'DirectSound' or 'ASIO'. ASIO
drivers do not come pre-installed on Windows machines. Install an ASIO driver outside of
MATLAB to use the 'ASIO' driver option.

Note: If Driver is specified as 'ASIO', open the ASIO UI outside of MATLAB to set the
sound card buffer size to the BufferSize value of your audioDeviceWriter System
object. See the documentation of your ASIO driver for more information.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio System Toolbox. If the
toolbox is not installed, specifying nondefault Driver values returns an error.

Device — Device used to play audio samples
default audio device (default) | string

Device used to play audio samples, specified as a string. Use the getAudioDevices
method to list available devices.

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The
range of SampleRate depends on your audio hardware.

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit
float'

Data type used by the device, specified as a string. Before performing digital-to-analog
conversion, the input data is cast to a data type specified by BitDepth.

To specify a nondefault BitDepth, you must install Audio System Toolbox. If the toolbox
is not installed, specifying a nondefault BitDepth returns an error.

SupportVariableSizeInput — Option to support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

 audioDeviceWriter System object

3-23

• false — If the audioDeviceWriter object is locked, the input must have the same
frame size at each call to step or play. The buffer size of your audio device is the
same as the input frame size.

• true — If the audioDeviceWriter object is locked, the input frame size can change
at each call to step or play. The buffer size of your audio device is specified through
the BufferSize property.

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note: If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer
size to the BufferSize value of your audioDeviceWriter System object.

This property is available when you set SupportVariableSizeInput to true.

ChannelMappingSource — Source of mapping between columns of input matrix and
channels of output device
'Auto' (default) | 'Property'

Source of mapping between columns of input matrix and channels of audio output device,
specified as 'Auto' or 'Property'.

• 'Auto' — Default settings determine the mapping between columns of input matrix
and channels of audio output device. For example, suppose your input is a matrix
with four columns, and your audio device has four channels available. Column 1 of
your input data writes to channel 1 of your device, column 2 of your input data writes
to channel 2 of your device, and so on.

• 'Property' — The ChannelMapping property determines the mapping between
columns of input matrix and channels of audio output device.

ChannelMapping — Nondefault mapping between columns of input matrix and channels of
output device
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of input matrix and channels of output device,
specified as a scalar or vector of valid channel indices. See the “Specify Channel Mapping
for audioDeviceWriter” on page 3-28 example for more information.

3 System objects in Audio System Toolbox

3-24

This property is available when you set ChannelMappingSource to 'Property'.

To selectively map between columns of the input matrix and your sound card's output
channels, you must install Audio System Toolbox. If the toolbox is not installed,
specifying a nondefault ChannelMapping returns an error.

Methods

clone Create copy of System object with same
property values

getAudioDevices List available audio input devices
info Get information about selected device
isLocked Locked status for input attributes and

nontunable properties
play Stream audio data to output device
release Enable property values and input

characteristics to change
step Stream audio data to output device

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader System object™ with default settings. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate. Call setup
to reduce the computational load of initialization in an audio stream loop.

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileInfo.SampleRate);

setup(deviceWriter,...

 audioDeviceWriter System object

3-25

 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

In an audio stream loop, read an audio signal frame from the file, and write the frame to
your device.

while ~isDone(fileReader)

 audioData = step(fileReader);

 play(deviceWriter,audioData);

end

Close the input file and release the device.

release(fileReader);

release(deviceWriter);

Reduce Latency due to Output Device Buffer

Modify default properties of your audioDeviceWriter System object™ to reduce
latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default
settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that
of the audio file reader.

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Calculate the latency due to your device buffer, in seconds.

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency =

 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to
256. Calculate the buffer latency in seconds.

fileReader.SamplesPerFrame = 256;

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

3 System objects in Audio System Toolbox

3-26

bufferLatency =

 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does
not keep pace with the output device. Determine the underrun of an audio stream loop,
add artificial computational load to the audio stream loop, and then modify properties
of your audioDeviceWriter System object (TM) to decrease underrun. Your results
depend on your computer.

Create a dsp.AudioFileReader System object, and specify the file to read. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object. Use the SampleRate of the file reader
as the SampleRate of the device writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,...

 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Run your audio stream loop with input from file and output to device. Print the total
samples underrun and the underrun in seconds.

totalUnderrun = 0;

while ~isDone(fileReader)

 input = step(fileReader);

 numUnderrun = play(deviceWriter,input);

 totalUnderrun = totalUnderrun + numUnderrun;

end

fprintf('Total samples underrun: %d.\n',...

 totalUnderrun);

fprintf('Total seconds underrun: %d.\n',...

 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.

 audioDeviceWriter System object

3-27

Total seconds underrun: 0.

Release your dsp.AudioFileReader and audioDeviceWriter System objects and set
your counter variable to zero.

release(fileReader);

release(deviceWriter);

totalUnderrun = 0;

Add an artificial computational load to your audio stream loop. The computational load
causes the audio stream loop to go slower than the device, which results in periods of
silence in the output audio signal.

while ~isDone(fileReader)

 input = step(fileReader);

 numUnderrun = play(deviceWriter,input);

 totalUnderrun = totalUnderrun + numUnderrun;

 for m = 1:1500000

 n = sqrt(m);

 end

end

fprintf('Total samples underrun: %d.\n',...

 totalUnderrun);

fprintf('Total seconds underrun: %d.\n',...

 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.

Total seconds underrun: 0.

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter
variable to zero.

release(fileReader);

release(deviceWriter);

totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the
SupportVariableSizeInput property of your audioDeviceWriter System object is
set to false, the buffer size of your audio device is the same size as the input frame size.
Increasing your device buffer size decreases underrun.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

fileReader.SamplesPerFrame = 2048;

fileInfo = audioinfo('speech_dft.mp3');

3 System objects in Audio System Toolbox

3-28

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,...

 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Calculate the total underrun.

while ~isDone(fileReader)

 input = step(fileReader);

 numUnderrun = play(deviceWriter,input);

 totalUnderrun = totalUnderrun + numUnderrun;

 for m = 1:1500000

 n = sqrt(m);

 end

end

fprintf('Total samples underrun: %d.\n',...

 totalUnderrun);

fprintf('Total seconds underrun: %d.\n',...

 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.

Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However,
increasing the frame size also increases latency. Other approaches to reduce underrun
include:

• Increase the buffer size independent of input frame size. To increase buffer size
independent of input frame size, you must first set SupportVariableSizeInput to
true. This approach also increases latency.

• Decrease the sample rate. Decreasing the sample rate reduces both latency and
underrun at the cost of signal resolution.

• Choose an optimal driver and device for your system.

Specify Channel Mapping for audioDeviceWriter

Specify non-default channel mapping for an audioDeviceWriter System object™. This
example is hardware specific. It assumes that your computer has a default audio output
device with two available channels.

Create an audioDeviceWriter System object™ with default settings.

deviceWriter = audioDeviceWriter;

 audioDeviceWriter System object

3-29

By default, the audioDeviceWriter System object writes the max number of channels
available, corresponding to the columns of the input matrix. Use info to get the max
number of channels of your device.

info(deviceWriter)

ans =

 Driver: 'DirectSound'

 DeviceName: 'Primary Sound Driver'

 MaximumOutputChannels: 2

If deviceWriter is called with one column of data, two channels are written to your
audio output device. Both channels correspond to the one column of data.

Use the audioOscillator System object to output a tone to your audioDeviceWriter
System object. Your object, sineGenerator, returns a vector when called by step.

sineGenerator = audioOscillator;

Write the sine tone to your audio device. If you are using headphones, you can hear the
tone from both channels.

count = 0;

while count < 500

 sine = step(sineGenerator);

 play(deviceWriter,sine);

 count = count + 1;

end

If your audioDeviceWriter System object is called with two columns of data, two
channels are written to your audio output device. The first column corresponds to
channel 1 of your audio output device, and the second column corresponds to channel 2 of
your audio output device.

Write a two-column matrix to your audio output device. Column one corresponds to the
sine tone and column two corresponds to a static signal. If you are using headphones, you
can hear the tone from one speaker and the static from the other speaker.

count = 0;

while count < 500

 sine = step(sineGenerator);

 static = randn(length(sine),1);

3 System objects in Audio System Toolbox

3-30

 play(deviceWriter,[sine,static]);

 count = count + 1;

end

Specify alternative mappings between channels of your device and columns of the output
matrix by indicating the output channel number at an index corresponding to the input
column. Set ChannelMappingSource to 'Property'. Indicate that the first column of
your input data writes to channel 2 of your output device, and that the second column
of your input data writes to channel 1 of your output device. To modify the channel
mapping, you must first unlock the audioDeviceReader System object.

release(deviceWriter);

deviceWriter.ChannelMappingSource = 'Property';

deviceWriter.ChannelMapping = [2,1];

Play your audio signals with reversed mapping. If you are using headphones, notice that
the tone and static have switched speakers.

count = 0;

while count < 500

 sine = step(sineGenerator);

 static = randn(length(sine),1);

 play(deviceWriter,[sine,static]);

 count = count + 1;

end

More About

Audio Device Writer System Interaction

Properties of the audio device writer specify the driver, the device, and device attributes
such as sample rate, bit depth, and buffer size.

 audioDeviceWriter System object

3-31

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
audio device writer data flow.

Run an Executable Outside MATLAB

The generated code for the audioDeviceWriter System object relies on prebuilt
dynamic library files that ship with MATLAB. You must account for these extra library
files when you run audioDeviceWriter outside the MATLAB environment. To run a
standalone executable generated from code containing the audioDeviceWriter System
object, set your system environment using the commands specific to your platform.

Platform Command

Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (Bash)

Linux setenv LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;

%PATH%

See Also
audioDeviceReader | dsp.AudioFileWriter | dsp.AudioFileReader | Audio Device
Writer

More About
• “Audio I/O: Buffering, Latency, and Throughput”
• Measure Audio Latency

3 System objects in Audio System Toolbox

3-32

• “Real-Time Audio in MATLAB”

Introduced in R2016a

 clone

3-33

clone
System object: audioDeviceWriter

Create copy of System object with same property values

Syntax

aDWclone = clone(aDW)

Description

aDWclone = clone(aDW) creates an audio device writer System object, aDWclone,
with the same property values as aDW. If the original object is locked, then clone creates
a copy that is also locked. This copy has states initialized to the same values as the
original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-34

getAudioDevices
System object: audioDeviceWriter

List available audio input devices

Syntax

devices = getAudioDevices(aDW)

Description

devices = getAudioDevices(aDW) returns a cell array listing available audio output
devices. The list of available output devices depends on the specified Driver property of
your audioDeviceWriter object.

Introduced in R2016a

 info

3-35

info
System object: audioDeviceWriter

Get information about selected device

Syntax

aDWInfo = info(aDW)

Description

aDWInfo = info(aDW) returns a structure containing information about your
audioDeviceWriter System object. The structure contains information about the
driver, device, and maximum number of input channels for your audioDeviceWriter
System object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-36

isLocked
System object: audioDeviceWriter

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(aDW)

Description

L = isLocked(aDW) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the audio device writer, aDW.

The aDW object performs an internal initialization the first time you execute step or
play The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

 play

3-37

play
System object: audioDeviceWriter

Stream audio data to output device

Syntax

numUnderrun = play(aDW,x)

Description

numUnderrun = play(aDW,x) writes one frame of audio samples, x, to the audio
output device specified by the audio device writer System object, aDW. The number of
samples underrun since the last call to play is returned.

If x is of data type 'double' or 'single', the audio device writer clips values outside
the range [–1, 1]. For other data types, the allowed input range is [min, max] of the
specified data type.

When you call the play method of an audioDeviceWriter System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceWriter at a time. Call the release method of the
audioDeviceWriter System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
play. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-38

release
System object: audioDeviceWriter

Enable property values and input characteristics to change

Syntax

release(aDW)

Description

release(aDW) releases system resources, such as memory, from your audio device
writer, aDW. After you call release, all properties and input characteristics of aDW can
change.

Note: Once you call release on a System object, subsequent calls to setup, step, play,
reset, or release do not support code generation.

Introduced in R2016a

 step

3-39

step
System object: audioDeviceWriter

Stream audio data to output device

Syntax

numUnderrun = step(aDW,x)

Description

numUnderrun = step(aDW,x) writes one frame of audio samples, x, to the audio
output device specified by the audio device writer System object, aDW. The number of
samples underrun since the last call to step is returned.

If x is of data type 'double' or 'single', the audio device writer clips values outside
the range [–1, 1]. For other data types, the allowed input range is [min, max] of the
specified data type.

When you call the step method of an audioDeviceWriter System object, the
audio device specified by the Device property is locked. An audio device can be
locked by only one audioDeviceWriter at a time. Call the release method of the
audioDeviceWriter System object to release the audio device.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-40

audioOscillator System object

Generate sine, square, and sawtooth waveforms

Description

The audioOscillator System object generates tunable waveforms. Typical uses
include the generation of test signals for test benches, and the generation of control
signals for audio effects. Properties of the audioOscillator System object specify the
type of waveform generated.

To generate tunable waveforms:

1 Define and set up your audio oscillator. See “Construction” on page 3-40.
2 Call step to generate a waveform according to the properties of your

audioOscillator object. The object has internal memory suited to frame-based
processing.

Construction

osc = audioOscillator creates an audio oscillator System object, osc, with default
property values.

osc = audioOscillator(signalTypeValue) sets the SignalType property to
signalTypeValue.

osc = audioOscillator(signalTypeValue, frequencyValue) sets the
Frequency property to frequencyValue.

osc = audioOscillator(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: osc = audioOscillator('SignalType','sine','Frequency',8000,
'DCOffset',1) creates a System object, osc, which generates sine waveforms with
Frequency set to 8000 and DCOffset set to 1.

 audioOscillator System object

3-41

Properties

SignalType — Type of generated waveform
'sine' (default) | 'square' | 'sawtooth'

Type of waveform generated by your audioOscillator object, specified as 'sine',
'square', or 'sawtooth'.

The waveforms are generated using the algorithms specified by the sin, square, and
sawtooth functions.

This property is not tunable. You cannot change the value of this property when the
object is locked.

Frequency — Frequency of generated waveform (Hz)
100 (default) | real scalar | vector of real scalars

Frequency of generated waveform in Hz, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Frequency as a scalar or as a vector of length NumTones.
• For square waveforms, specify Frequency as a scalar.
• For sawtooth waveforms, specify Frequency as a scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Amplitude — Amplitude of generated waveform
1 (default) | real scalar | vector of real scalars

Amplitude of generated waveform, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Amplitude as a vector of length NumTones.
• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

The generated waveform is multiplied by the value specified by Amplitude at the
output, before DC offset is applied.

3 System objects in Audio System Toolbox

3-42

This property is tunable. You can change the value of this property even when the object
is locked.

PhaseOffset — Normalized phase offset of generated waveform
0 (default) | real scalar | vector of real scalars

Normalized phase offset of generated waveform, specified as a real scalar or vector of real
scalars with values in the range 0 to 1. The range is a normalized 2π radians interval.

• For sine waveforms, specify PhaseOffset as a vector of length NumTones.
• For square waveforms, specify PhaseOffset as a scalar.
• For sawtooth waveforms, specify PhaseOffset as a scalar.

This property is not tunable. You cannot change the value of this property when the
object is locked.

DCOffset — Value added to each element of generated waveform
0 (default) | real scalar | vector of real scalars

Value added to each element of generated waveform, specified as a real scalar or vector of
real scalars.

• For sine waveforms, specify DCOffset as a vector of length NumTones.
• For square waveforms, specify DCOffset as a scalar.
• For sawtooth waveforms, specify DCOffset as a scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

NumTones — Number of pure sine waveform tones
1 (default) | positive integer

Number of pure sine waveform tones summed and then generated by the audio oscillator,
specified as a positive integer. This property applies when you set the SignalType
property to 'sine'.

Individual tones are generated based on values specified by Frequency, Amplitude,
PhaseOffset, and DCOffset.

This property is tunable. You can change the value of this property even when the object
is locked.

 audioOscillator System object

3-43

DutyCycle — Square waveform duty cycle
0.5 (default) | scalar in the range 0 to 1

Square waveform duty cycle, specified as a scalar in the range 0 to 1. This property
applies when you set the SignalType property to 'square'.

Square waveform duty cycle is the percentage of one period in which the waveform is
above the median amplitude. A DutyCycle of 1 or 0 is equivalent to a DC offset.

This property is tunable. You can change the value of this property even when the object
is locked.

Width — Sawtooth width
1 (default) | real positive scalar

Sawtooth width, specified as a scalar in the range 0 to 1. This property applies when you
set the SignalType property to 'sawtooth'.

Sawtooth width determines the point in a sawtooth waveform period at which the
maximum occurs.

This property is tunable. You can change the value of this property even when the object
is locked.

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range 1 to 192,000.

This property determines the vector length that the step method of your
audioOscillator object outputs.

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Sample rate of generated waveform (Hz)
44100 (default) | positive scalar

Sample rate of generated waveform in Hz, specified as a positive scalar greater than
twice the value specified by Frequency.

This property is tunable. You can change the value of this property even when the object
is locked.

3 System objects in Audio System Toolbox

3-44

OutputDataType — Data type of generated waveform
'double' (default) | 'single'

Data type of generated waveform, specify as 'double' or 'single'.

This property is not tunable. You cannot change the value of this property when the
object is locked.

Methods

clone Create copy of System object with same
property values

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Generate tunable waveforms

Examples

Generate Variable-Frequency Sine Wave

Use the audioOscillator System object™ to generate a variable-frequency sine wave.

Create an audio oscillator to generate a sine wave. Use the default settings.

osc = audioOscillator;

 audioOscillator System object

3-45

Create a time scope to visualize the variable-frequency sine wave generated by the audio
oscillator.

scope = dsp.TimeScope(...

 'SampleRate',osc.SampleRate,...

 'TimeSpan',0.1,...

 'YLimits',[-1.5,1.5],...

 'TimeSpanOverrunAction', 'Scroll', ...

 'ShowGrid',true,...

 'Title','Variable-Frequency Sine Wave');

Place the audio oscillator in an audio stream loop. Increase the frequency of your
sinewave in 50 Hz increments.

counter = 0;

while (counter < 1e4)

 counter = counter + 1;

 sineWave = step(osc);

 step(scope,sineWave);

 if mod(counter,1000)==0

 osc.Frequency = osc.Frequency + 50;

 end

end

3 System objects in Audio System Toolbox

3-46

See Also
wavetableSynthesizer

Introduced in R2016a

 clone

3-47

clone
System object: audioOscillator

Create copy of System object with same property values

Syntax

oscClone = clone(osc)

Description

oscClone = clone(osc) creates an audio oscillator System object, oscClone, with
the same property values as osc. If the original object is locked, then clone creates
a copy that is also locked. This copy has states initialized to the same values as the
original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-48

configureMIDI
System object: audioOscillator

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(osc)

configureMIDI(osc,propName)

configureMIDI(osc,propName,controlNumber)

configureMIDI(osc,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(osc) starts a MIDI configuration user interface (UI). Use the UI
to synchronize tunable properties of the audio oscillator System object, osc, to MIDI
controls of your choice.

configureMIDI(osc,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(osc,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(osc,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the audioOscillator System object maps to MIDI controls
with a specified range.

Property Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear

 configureMIDI

3-49

Property Range Mapping

DutyCycle (available when
you set SignalType to
'square')

0 to 1 linear

Width (available when
you set SignalType to
'sawtooth')

0 to 1 linear

Introduced in R2016a

3 System objects in Audio System Toolbox

3-50

createAudioPluginClass
System object: audioOscillator

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(osc)

createAudioPluginClass(osc,pluginName)

Description

createAudioPluginClass(osc) creates a System object source plugin that
implements the functionality of the audioOscillator System object, osc. The name
of the created class is the audioOscillator System object variable name followed by
'Plugin', for example, oscPlugin. By default, the created class outputs a one-channel
(column) matrix.

createAudioPluginClass(osc,pluginName) specifies the name of your created
System object source plugin class.

Example: createAudioPluginClass(osc,'myOscillator') creates a System
object source plugin with class name myOscillator.

Each tunable property of the audioOscillator System object maps to a plugin
parameter with a default range.

Property Plugin Parameter Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear
DutyCycle (available when
you set SignalType to
'square')

0 to 1 linear

 createAudioPluginClass

3-51

Property Plugin Parameter Range Mapping

Width (available when
you set SignalType to
'sawtooth')

0 to 1 linear

Introduced in R2016a

3 System objects in Audio System Toolbox

3-52

disconnectMIDI
System object: audioOscillator

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(osc)

Description

disconnectMIDI(osc) disconnects MIDI controls from your audio oscillator, osc. Only
those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

 getMIDIConnections

3-53

getMIDIConnections
System object: audioOscillator

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(osc)

Description

connectionInfo = getMIDIConnections(osc) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio
oscillator, osc. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each tunable
property of osc that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3 System objects in Audio System Toolbox

3-54

isLocked
System object: audioOscillator

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(osc)

Description

L = isLocked(osc) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the audio oscillator, osc.

The osc object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

 release

3-55

release
System object: audioOscillator

Enable property values and input characteristics to change

Syntax

release(osc)

Description

release(osc) releases system resources, such as memory, from your audio oscillator,
osc. After you call release, all properties and input characteristics of osc can change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-56

reset
System object: audioOscillator

Reset internal states of System object

Syntax

reset(osc)

Description

reset(osc) resets internal states of the audio oscillator, osc, to their initial values.

Introduced in R2016a

 step

3-57

step
System object: audioOscillator

Generate tunable waveforms

Syntax

y = step(osc)

Description

y = step(osc) generates a waveform output, y. The type of waveform is specified by
the algorithm and properties of the System object, osc.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-58

crossoverFilter System object

Audio crossover filter

Description

The crossoverFilter System object implements an audio crossover filter, which is
used to split an audio signal into two or more frequency bands. Crossover filters are
multiband filters whose overall magnitude frequency response is flat.

To implement an audio crossover filter:

1 Define and set up your crossover filter. See “Construction” on page 3-58.
2 Call step to implement a crossover filter on each channel of the input signal

according to the properties of your crossoverFilter object. The input must be
a real-valued, double-precision or single-precision matrix. The crossoverFilter
object treats each column of the input as an independent channel.

Construction

crossFilt = crossoverFilter creates a System object, crossFilt, that
implements an audio crossover filter.

crossFilt = crossoverFilter(numCrossoversValue) sets the NumCrossovers
property to numCrossoversValue.

crossFilt = crossoverFilter(numCrossoversValue,

crossoverFrequenciesValue) sets the CrossoverFrequencies property to
crossoverFrequenciesValue.

crossFilt = crossoverFilter(numCrossoversValue,

crossoverFrequenciesValue,crossoverSlopesValue) sets the
CrossoverSlopes property to crossoverSlopesValue.

crossFilt = crossoverFilter(numCrossoversValue,

crossoverFrequenciesValue,crossoverSlopesValue,Fs) sets the SampleRate
property to Fs.

 crossoverFilter System object

3-59

crossFilt = crossoverFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Example: crossFilt = crossoverFilter(2,'CrossoverFrequencies',
[100,800],'CrossoverSlopes',[6,48]) creates a System object, crossFilt, with
the NumCrossovers property set to 2, the CrossoverFrequencies property set to
[100,800], and the CrossoverSlopes property set to [6,48].

To visualize the crossover bands of the crossFilt System object, use the visualize
method of the object.

visualize(crossFilt)

Properties

NumCrossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

3 System objects in Audio System Toolbox

3-60

Number of magnitude response band crossings, specified as a scalar integer in the range
1 to 4.

The number of bands output when crossoverFilter is called by step is one more than
the NumCrossovers value.

Number of magnitude response band
crossings

Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

This property is not tunable. You cannot change the value of this property when the
object is locked.

CrossoverFrequencies — Crossover frequencies (Hz)
100 (default) | scalar | vector

Crossover frequencies in Hz, specified as a scalar or vector of real values of length
NumCrossovers.

Crossover frequencies are the intersections of magnitude response bands of the individual
two-band crossover filters used in the multiband crossover filter.

This property is tunable. You can change the value of this property even when the object
is locked.

CrossoverSlopes — Crossover slopes (dB/octave)
12 (default) | scalar | vector

Crossover slopes in dB/octave, specified as a scalar or vector of real values in the range
[6:6:48]. If a crossover slope is not specified inside the range, it is rounded to the
nearest allowed value.

• If CrossoverSlopes is a scalar, all two-band component crossovers slopes take that
value.

• If CrossoverSlopes is a vector of length NumCrossovers, the respective two-band
component crossover slopes take those values.

 crossoverFilter System object

3-61

Crossover slopes are the slopes of individual bands at the associated crossover frequency,
as specified in the two-band component crossover.

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

configureMIDI Configure MIDI connections between
System object and MIDI controller

cost Implementation cost of System object
createAudioPluginClass Create audio plugin class that implements

functionality of System object
disconnectMIDI Disconnect MIDI controls from System

object
getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Implement audio crossover filter
visualize Visualize magnitude response of System

object

3 System objects in Audio System Toolbox

3-62

Examples

Pass Noise Signal Through Crossover Filter

Use the crossoverFilter System object™ to split Gaussian noise into three separate
frequency bands.

Create a 5 second noise signal that assumes a 12,000 Hz sample rate.

noise = randn(12000*5,1);

Create a crossoverFilter System object with 2 crossovers (3 bands), crossover
frequencies at 4 kHz and 8 kHz, a slope of 48 dB/octave, and a sample rate of 24 kHz.

crossFilt = crossoverFilter(...

 'NumCrossovers',2,...

 'CrossoverFrequencies',[4000,8000],...

 'CrossoverSlopes',48,...

 'SampleRate',24000);

Visualize the magnitude response of your crossover filter object.

visualize(crossFilt);

 crossoverFilter System object

3-63

Call step to pass the noise signal through your crossover filter.

[y1,y2,y3] = step(crossFilt,noise);

Visualize the results using a spectrogram.

figure('Position',[100,100,800,700]);

subplot(4,1,1)

 spectrogram(noise,120,100,6000,24000,'yaxis');

 title('Noise');

subplot(4,1,2)

 spectrogram(y1,120,100,6000,24000,'yaxis');

 title('y1');

subplot(4,1,3)

 spectrogram(y2,120,100,6000,24000,'yaxis');

3 System objects in Audio System Toolbox

3-64

 title('y2');

subplot(4,1,4)

 spectrogram(y3,120,100,6000,24000,'yaxis');

 title('y3');

 crossoverFilter System object

3-65

Split Audio Signal into Three Bands

Use the crossoverFilter System object™ to split an audio signal into three frequency
bands.

3 System objects in Audio System Toolbox

3-66

Construct the audio file reader and audio device writer System objects. Use the sample
rate of the reader as the sample rate of the writer. Call setup to reduce the computation
load of initialization in an audio stream loop.

samplesPerFrame = 256;

fileReader = dsp.AudioFileReader(...

 'RockGuitar-16-44p1-stereo-72secs.wav',...

 'SamplesPerFrame',samplesPerFrame);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(fileReader);

setup(deviceWriter,ones(samplesPerFrame,2));

Create a crossover filter System object with 2 crossovers (3 bands), crossover frequencies
at 500 Hz and 1 kHz, and a slope of 18 dB/octave. Use the sample rate of the reader as
the sample rate of the crossover filter.

crossFilt = crossoverFilter(...

 'NumCrossovers',2,...

 'CrossoverFrequencies',[500,1000],...

 'CrossoverSlopes',18,...

 'SampleRate',fileReader.SampleRate);

setup(crossFilt,ones(samplesPerFrame,2));

Visualize the bands of the crossover filter.

visualize(crossFilt);

 crossoverFilter System object

3-67

Get the cost of the crossover filter.

cost(crossFilt)

ans =

 NumCoefficients: 48

 NumStates: 18

 MultiplicationsPerInputSample: 48

 AdditionsPerInputSample: 37

Create a spectrum analyzer to visualize the effect of the crossover filter.

scope = dsp.SpectrumAnalyzer(...

3 System objects in Audio System Toolbox

3-68

 'SampleRate',fileReader.SampleRate,...

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','Log',...

 'FrequencyResolutionMethod','WindowLength',...

 'WindowLength',samplesPerFrame,...

 'Title',...

 'Crossover Bands and Reconstructed Signal',...

 'ShowLegend',true,...

 'ChannelNames',{'Original Signal','Band 1',...

 'Band 2','Band 3','Sum'});

Play 10 seconds of the audio signal. Visualize the spectrum of the original audio, the
crossover bands, and the reconstructed signal (sum of bands).

setup(scope,ones(samplesPerFrame,5));

count = 0;

while count < (fileReader.SampleRate/samplesPerFrame)*10

 originalSignal = step(fileReader);

 [band1,band2,band3] = step(crossFilt,originalSignal);

 sumOfBands = band1 + band2 + band3;

 step(scope,...

 [originalSignal(:,1),...

 band1(:,1),...

 band2(:,1),...

 band3(:,1),...

 sumOfBands(:,1)]);

 step(deviceWriter,sumOfBands);

 count = count+1;

end

 crossoverFilter System object

3-69

Algorithms

The crossover System object is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented
with Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

3 System objects in Audio System Toolbox

3-70

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the
branches of your crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

 crossoverFilter System object

3-71

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions
of the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References

[1] D’Appolito, Joseph A. “Active Realization of Multiway All-Pass Crossover Systems”.
Journal of Audio Engineering Society. Vol. 35, Issue 4, pp. 239–245.

See Also
multibandParametricEQ | Crossover Filter

Introduced in R2016a

3 System objects in Audio System Toolbox

3-72

clone
System object: crossoverFilter

Create copy of System object with same property values

Syntax

crossFiltClone = clone(crossFilt)

Description

crossFiltClone = clone(crossFilt) creates a crossover filter System object,
crossFiltClone, with the same property values as crossFilt. If the original object is
locked, then clone creates a copy that is also locked. This copy has states initialized to
the same values as the original. If the original object is not locked, then clone creates a
new unlocked object with uninitialized states.

Introduced in R2016a

 configureMIDI

3-73

configureMIDI
System object: crossoverFilter

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(crossFilt)

configureMIDI(crossFilt,propName)

configureMIDI(crossFilt,propName,controlNumber)

configureMIDI(crossFilt,propName,controlNumber,'DeviceName',

deviceName)

Description

configureMIDI(crossFilt) starts a MIDI configuration user interface (UI). Use the
UI to synchronize tunable properties of the crossover filter System object, crossFilt, to
MIDI controls of your choice.

configureMIDI(crossFilt,propName) makes the System object property,
propName, respond to any control on the default MIDI device.

configureMIDI(crossFilt,propName,controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI(crossFilt,propName,controlNumber,'DeviceName',

deviceName) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceName.

Each tunable property of the crossoverFilter System object maps to MIDI controls
with a specified range.

Property Range Unit

CrossoverFrequencies 20 to 20,000 Hz
CrossoverSlopes 6 to 48 dB/octave

3 System objects in Audio System Toolbox

3-74

Introduced in R2016a

 cost

3-75

cost
System object: crossoverFilter

Implementation cost of System object

Syntax

C = cost(crossFilt)

Description

C = cost(crossFilt) returns a structure, C, whose fields contain information about
the computation cost of implementing the crossover filter, crossFilt.

Structure Field Description

NumCoefficients Number of filter coefficients (excluding
coefficients with values 0, 1, or –1)

NumStates Number of states
MultiplicationsPerInputSample Number of multiplications per input

sample
AdditionsPerInputSample Number of additions per input sample

Introduced in R2016a

3 System objects in Audio System Toolbox

3-76

createAudioPluginClass
System object: crossoverFilter

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(crossFilt)

createAudioPluginClass(crossFilt,pluginName)

Description

createAudioPluginClass(crossFilt) creates a System object plugin that
implements the functionality of the crossoverFilter System object, crossFilt. The
name of the created class is the crossoverFilter System object variable name followed
by 'Plugin', for example, crossFiltPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(crossFilt,pluginName) specifies the name of your
created System object plugin class.

Example: createAudioPluginClass(crossFilt,'xOverFilter') creates a
System object plugin with class name xOverFilter.

Each tunable property of the crossoverFilter System object maps to a plugin
parameter with a default range.

Property Plugin Parameter Range Unit

CrossoverFrequencies 20 to 20,000 Hz
CrossoverSlopes 6 to 48 dB/octave

 createAudioPluginClass

3-77

Introduced in R2016a

3 System objects in Audio System Toolbox

3-78

disconnectMIDI
System object: crossoverFilter

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(crossFilt)

Description

disconnectMIDI(crossFilt) disconnects MIDI controls from your crossover filter,
crossFilt. Only those MIDI connections established using configureMIDI are
disconnected.

Introduced in R2016a

 getMIDIConnections

3-79

getMIDIConnections
System object: crossoverFilter

Get MIDI connection information

Syntax

connectionInfo= getMIDIConnections(crossFilt)

Description

connectionInfo= getMIDIConnections(crossFilt) returns a structure,
connectionInfo, containing information about the MIDI connections for your crossover
filter, crossFilt. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of crossFilt that has established MIDI connections. Each substructure
contains the control number, the device name of the corresponding MIDI control, and the
property mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3 System objects in Audio System Toolbox

3-80

isLocked
System object: crossoverFilter

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(crossFilt)

Description

L = isLocked(crossFilt) returns a logical value, L, that indicates whether input
attributes and nontunable properties are locked for the crossover filter, crossFilt.

The crossFilter object performs an internal initialization the first time you execute
step. The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

 release

3-81

release
System object: crossoverFilter

Enable property values and input characteristics to change

Syntax

release(crossFilt)

Description

release(crossFilt) releases system resources, such as memory, of your crossover
filter, crossFilt. After you call release, all properties and input characteristics of
crossFilt can change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-82

reset
System object: crossoverFilter

Reset internal states of System object

Syntax

reset(crossFilter)

Description

reset(crossFilter) resets internal states of the crossover filter, crossFilt, to their
initial values.

Introduced in R2016a

 step

3-83

step
System object: crossoverFilter

Implement audio crossover filter

Syntax

[band1,band2,...,bandN] = step(crossFilt,x)

Description

[band1,band2,...,bandN] = step(crossFilt,x) applies a crossover filter on the
input, x, and returns the filtered output bands, [band1,band2,...,bandN], where N =
NumCrossovers + 1.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-84

visualize
System object: crossoverFilter

Visualize magnitude response of System object

Syntax

visualize(crossFilt)

visualize(crossFilt,N)

Description

visualize(crossFilt) plots the magnitude response of each individual filter band.

visualize(crossFilt,N) specifies an N-point FFT used to calculate the magnitude
response. The default is 2048.

Introduced in R2016a

 compressor System object

3-85

compressor System object

Dynamic range compressor

Description

The compressor System object performs dynamic range compression independently
across each input channel. Dynamic range compression attenuates the volume of loud
sounds that cross a given threshold. It uses specified attack and release times to achieve
a smooth applied gain curve. Properties of the compressor System object specify the
type of dynamic range compression.

To perform dynamic range compression on your input:

1 Define and set up your dynamic range compressor. See “Construction” on page
3-85.

2 Call step to perform dynamic range compression on each channel of the input signal
according to the properties of your compressor object. The input must be a real-
valued, double-precision or single-precision matrix. The compressor object treats
each column of the input as an independent channel.

Construction

dRC = compressor creates a System object, dRC, that performs dynamic range
compression independently across each input channel over time.

dRC = compressor(thresholdValue) sets the Threshold property to
thresholdValue.

dRC = compressor(thresholdValue, ratioValue) sets the Ratio property to
ratioValue.

dRC = compressor(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: dRC = compressor('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRC, with the AttackTime property set to 0.01 and the SampleRate
property set to 16000.

3 System objects in Audio System Toolbox

3-86

Properties

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

This property is tunable. You can change the value of this property even when the object
is locked.

Ratio — Compression ratio
5 (default) | real scalar

Compression ratio, specified as a real scalar greater than or equal to 1.

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >

thresholdValue, the compression ratio is defined as
R

x n T

y n T
=

-

-

([])

([]) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

This property is tunable. You can change the value of this property even when the object
is locked.

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

 compressor System object

3-87

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x
R

x T
W

W
= +

-Ê
ËÁ

ˆ
¯̃

¥ - +Ê
ËÁ

ˆ
¯̃

¥()

1
1

2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

This property is tunable. You can change the value of this property even when the object
is locked.

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final
value when the input goes above the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

3 System objects in Audio System Toolbox

3-88

This property is tunable. You can change the value of this property even when the object
is locked.

MakeUpGainMode — Make-up gain mode
'Auto' (default) | 'Property'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' — Make-up gain is applied at the output of the dynamic range compressor
such that a steady-state 0 dB input has a 0 dB output.

• 'Property' — Make-up gain is set to the value specified in the MakeUpGain
property.

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during compression. It is applied at the
output of the dynamic range compressor. This property is available when you set
MakeUpGainMode to 'Property'.

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

configureMIDI Configure MIDI connections between
System object and MIDI controller

 compressor System object

3-89

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Perform dynamic range compression
visualize Visualize static compression characteristics

of System object

Examples

Compress Audio Signal

Use dynamic range compression to attenuate the volume of loud sounds.

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-44p1-stereo-11secs.mp3',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Set up the compressor to have a threshold of -15 dB, a ratio of 7, and a knee width of 5.
Use the sample rate of your audio file reader.

dRC = compressor(-15,7,...

 'KneeWidth',5,...

 'SampleRate',fileReader.SampleRate);

Visualize the compression static characteristic.

visualize(dRC);

3 System objects in Audio System Toolbox

3-90

Set up the scope to visualize the original audio signal, the compressed audio signal, and
the applied compressor gain.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpan',1,...

 'BufferLength',44100*4,...

 'YLimits',[-1,1],...

 'TimeSpanOverrunAction','Scroll',...

 'ShowGrid',true,...

 'LayoutDimensions',[2,1],...

 compressor System object

3-91

 'NumInputPorts',2,...

 'Title',...

 ['Original vs. Compressed Audio (top)'...

 ' and Compressor Gain in dB (bottom)']);

scope.ActiveDisplay = 2;

scope.YLimits = [-4,0];

scope.YLabel = 'Gain (dB)';

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)

 x = step(fileReader);

 [y,g] = step(dRC,x);

 step(deviceWriter,y);

 x1 = x(:,1);

 y1 = y(:,1);

 step(scope,[x1,y1],g(:,1))

end

3 System objects in Audio System Toolbox

3-92

Algorithms

The compressor System object processes a signal frame by frame and element by
element.

 compressor System object

3-93

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log [] .= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range compressor to attenuate gain that is
above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

g x

x x T
W

x
R

x T
W

W
Tc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃ -

2

1
1

2

2

2

WW
x T

W

T
x T

R
x T

W

dB

dB
dB

2 2

2

Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
ÔÔ
Ô
Ô

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

3 System objects in Audio System Toolbox

3-94

g x

x x T

T
x T

R
x T

c dB

dB dB

dB
dB

() .=

<

+
-()

≥

Ï

Ì
Ô

ÓÔ

3 The gain modification, gΔ[n], is calculated as

g n g n x nc dBD
[] [] [].= -

4 gΔ[n] is smoothed using specified attack and release time properties,

g n
g n g n g n g n

g n gs
A s A s

R s R

[]
[] () [] , [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1

D D

DD D[] , [] []
,

n g n g ns£ -

Ï
Ì
Ô

ÓÔ 1

where αA , the attack time coefficient, is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
,

9

and αR , the release time coefficient, is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

5 If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as
the negative of the computed gain for a 0 dB input,

M g xc dB= - =().0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold, Ratio, and KneeWidth
properties. It does not depend on the input signal.

 compressor System object

3-95

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

g n g n MdB s[] [] .= +

7 The calculated gain in dB, gdB[n], is translated to a linear domain:

g nlin

g ndB

[] .

[]

=
Ê
ËÁ

ˆ
¯̃10 20

8 The output of the dynamic range compressor is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

See Also
expander | noiseGate | limiter | Compressor

Introduced in R2016a

3 System objects in Audio System Toolbox

3-96

clone
System object: compressor

Create copy of System object with same property values

Syntax

dRCclone = clone(dRC)

Description

dRCclone = clone(dRC) creates a dynamic range compressor System object,
dRCclone, with the same property values as dRC. If the original object is locked, then
clone creates a copy that is also locked. This copy has states initialized to the same
values as the original. If the original object is not locked, then clone creates a new
unlocked object with uninitialized states.

Introduced in R2016a

 configureMIDI

3-97

configureMIDI
System object: compressor

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRC)

configureMIDI(dRC,propName)

configureMIDI(dRC,propName,controlNumber)

configureMIDI(dRC,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRC) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range compressor System object, dRC, to
MIDI controls of your choice.

configureMIDI(dRC,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRC,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRC,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the compressor System object maps to MIDI controls with a
specified range.

Property Range Unit

Threshold –50 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3 System objects in Audio System Toolbox

3-98

Property Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

 createAudioPluginClass

3-99

createAudioPluginClass
System object: compressor

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRC)

createAudioPluginClass(dRC,pluginName)

Description

createAudioPluginClass(dRC) creates a System object plugin that implements
the functionality of the compressor System object, dRC. The name of the created class
is the compressor System object variable name followed by 'Plugin', for example,
dRCPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRC,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRC,'myCompressor') creates a System
object plugin with class name myCompressor.

Each tunable property of the compressor System object maps to a plugin parameter
with a default range.

Property Plugin Parameter Range Unit

Threshold –50 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3 System objects in Audio System Toolbox

3-100

Property Plugin Parameter Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

 disconnectMIDI

3-101

disconnectMIDI
System object: compressor

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRC)

Description

disconnectMIDI(dRC) disconnects MIDI controls from your dynamic range
compressor, dRC. Only those MIDI connections established using configureMIDI are
disconnected.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-102

getMIDIConnections
System object: compressor

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRC)

Description

connectionInfo = getMIDIConnections(dRC) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range compressor, dRC. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of dRC that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

 isLocked

3-103

isLocked
System object: compressor

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(dRC)

Description

L = isLocked(dRC) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the dynamic range compressor, dRC.

The dRC object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-104

release
System object: compressor

Enable property values and input characteristics to change

Syntax

release(dRC)

Description

release(dRC) releases system resources, such as memory, from your dynamic range
compressor, dRC. After you call release, all properties and input characteristics of dRC
can change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

 reset

3-105

reset
System object: compressor

Reset internal states of System object

Syntax

reset(dRC)

Description

reset(dRC) resets internal states of the dynamic range compressor, dRC, to their initial
values.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-106

step
System object: compressor

Perform dynamic range compression

Syntax

y = step(dRC,x)

[y,g] = step(dRC,x)

Description

y = step(dRC,x) performs dynamic range compression on the input signal, x, and
returns the compressed signal, y. The type of dynamic range compression is specified by
the algorithm and properties of the compressor System object, dRC.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRC,x) also returns the gain, in dB, applied at each input sample.

Introduced in R2016a

 visualize

3-107

visualize
System object: compressor

Visualize static compression characteristics of System object

Syntax

visualize(dRC)

visualize(dRC,myInputRange)

Y = visualize(___)

Description

visualize(dRC) plots the static compression characteristic of the dynamic range
compressor, dRC. The method computes the dB output level for the input range
[-50:0.01:0] dB.

visualize(dRC,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-108

expander System object

Dynamic range expander

Description

The expander System object performs dynamic range expansion independently across
each input channel. Dynamic range expansion attenuates the volume of quiet sounds
below a given threshold. It uses specified attack, release, and hold times to achieve a
smooth applied gain curve. Properties of the expander System object specify the type of
dynamic range expansion.

To perform dynamic range expansion on your input:

1 Define and set up your dynamic range expander. See “Construction” on page
3-108.

2 Call step to perform dynamic range expansion on each channel of the input signal
according to the properties of your expander object. The input must be a real-
valued, double-precision or single-precision matrix. The expander object treats each
column of the input as an independent channel.

Construction

dRE = expander creates a System object, dRE, that performs dynamic range expansion
independently across each input channel.

dRE = expander(thresholdValue) sets the Threshold property to
thresholdValue.

dRE = expander(thresholdValue,ratioValue) sets the Ratio property to
ratioValue.

dRE = expander(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: dRE = expander('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRE, with the AttackTime property set to 0.01, and the SampleRate
property set to 16000.

 expander System object

3-109

Properties

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

This property is tunable. You can change the value of this property even when the object
is locked.

Ratio — Expansion ratio
5 (default) | real scalar

Expansion ratio, specified as a real scalar greater than or equal to 1.

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <

thresholdValue, the expansion ratio is defined as
R

y n T

x n T
=

-

-

([])

([]) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

This property is tunable. You can change the value of this property even when the object
is locked.

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

3 System objects in Audio System Toolbox

3-110

y x

R x T
W

W
= +

- ¥ - -Ê
ËÁ

ˆ
¯̃

¥()

()1
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

This property is tunable. You can change the value of this property even when the object
is locked.

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final
value when the input goes below the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the expander gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

 expander System object

3-111

HoldTime — Hold time (s)
0.05 (default) | real scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object

3 System objects in Audio System Toolbox

3-112

step Perform dynamic range expansion
visualize Visualize static expander characteristics of

System object

Examples

Expand Audio Signal

Use dynamic range expansion to attenuate background noise from an audio signal.

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gausian noise. Play the audio.

while ~isDone(fileReader)

 x = step(fileReader);

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 play(deviceWriter,xCorrupted);

end

release(fileReader);

Set up the expander with a threshold of -40 dB, a ratio of 10, an attack time of 0.01
seconds, a release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate
of your audio file reader.

dRE = expander(-40,10,...

 'AttackTime',0.01,...

 'ReleaseTime',0.02,...

 'HoldTime',0,...

 'SampleRate',fileReader.SampleRate);

Visualize the expansion static characteristic.

visualize(dRE);

 expander System object

3-113

Set up the scope to visualize the signal before and after dynamic range expansion.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1 1],...

 'ShowGrid',true,...

 'ShowLegend',true,...

 'Title','Corrupted vs. Expanded Audio');

3 System objects in Audio System Toolbox

3-114

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)

 x = step(fileReader);

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 y = step(dRE,xCorrupted);

 play(deviceWriter,y);

 step(scope,[xCorrupted,y])

end

 expander System object

3-115

See Also
noiseGate | compressor | limiter | Expander

Introduced in R2016a

3 System objects in Audio System Toolbox

3-116

clone
System object: expander

Create copy of System object with same property values

Syntax

dREclone = clone(dRE)

Description

dREclone = clone(dRE) creates a dynamic range expander System object, dREclone,
with the same property values as dRE. If the original object is locked, then clone creates
a copy that is also locked. This copy has states initialized to the same values as the
original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

 configureMIDI

3-117

configureMIDI
System object: expander

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRE)

configureMIDI(dRE,propName)

configureMIDI(dRE,propName,controlNumber)

configureMIDI(dRE,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRE) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range expander System object, dRE, to
MIDI controls of your choice.

configureMIDI(dRE,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRE,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRE,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the expander System object maps to MIDI controls with a
specified range.

Property Range Unit

Threshold –140 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3 System objects in Audio System Toolbox

3-118

Property Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
HoldTime 0 to 4 seconds

Introduced in R2016a

 createAudioPluginClass

3-119

createAudioPluginClass
System object: expander

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRE)

createAudioPluginClass(dRE,pluginName)

Description

createAudioPluginClass(dRE) creates a System object plugin that implements the
functionality of the expander System object, dRE. The name of the created class is the
expander System object variable name followed by 'Plugin', for example, dREPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRE,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRE,'myExpander') creates a System object
plugin with class name myExpander.

Each tunable property of the expander System object maps to a plugin parameter with a
default range.

Property Plugin Parameter Range Unit

Threshold –140 to 0 dB
Ratio 1 to 50 none
KneeWidth 0 to 20 dB

3 System objects in Audio System Toolbox

3-120

Property Plugin Parameter Range Unit

AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds
HoldTime 0 to 4 seconds

Introduced in R2016a

 disconnectMIDI

3-121

disconnectMIDI
System object: expander

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRE)

Description

disconnectMIDI(dRE) disconnects MIDI controls from your dynamic range expander,
dRE. Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-122

getMIDIConnections
System object: expander

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRE)

Description

connectionInfo = getMIDIConnections(dRE) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range expander, dRE. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of dRE that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

 isLocked

3-123

isLocked
System object: expander

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(dRE)

Description

L = isLocked(dRE) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the dynamic range expander, dRE.

The dRE object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-124

release
System object: expander

Enable property values and input characteristics to change

Syntax

release(dRE)

Description

release(dRE) releases system resources, such as memory, from your dynamic range
expander, dRE. After you call release, all properties and input characteristics of dRE
can change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

 reset

3-125

reset
System object: expander

Reset internal states of System object

Syntax

reset(dRE)

Description

reset(dRE) resets internal states of the dynamic range expander, dRE, to their initial
values.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-126

step
System object: expander

Perform dynamic range expansion

Syntax

y = step(dRE,x)

[y,g] = step(dRE,x)

Description

y = step(dRE,x) performs dynamic range expansion on the input signal, x, and
returns the expanded signal, y. The type of dynamic range expansion is specified by the
algorithm and properties of the expander System object, dRE.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRE,x) also returns the gain, in dB, applied at each input sample.

Introduced in R2016a

 visualize

3-127

visualize
System object: expander

Visualize static expander characteristics of System object

Syntax

visualize(dRE)

visualize(dRE,myInputRange)

Y = visualize(___)

Description

visualize(dRE) plots the static expansion characteristic of the dynamic range
expander, dRE. The method computes the dB output level for the input range
[-20:0.01:0] dB.

visualize(dRE,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-128

limiter System object

Dynamic range limiter

Description

The limiter System object performs brick-wall dynamic range limiting independently
across each input channel. Dynamic range limiting suppresses the volume of loud sounds
that cross a given threshold. It uses specified attack and release times to achieve a
smooth applied gain curve. Properties of the limiter System object specify the type of
dynamic range limiting.

To perform dynamic range limiting on your input:

1 Define and set up your dynamic range limiter. See “Construction” on page 3-128.
2 Call step to perform dynamic range limiting on each channel of the input signal

according to the properties of your limiter object. The input must be a real-valued,
double-precision or single-precision matrix. The limiter object treats each column
of the input as an independent channel.

Construction

dRL = limiter creates a System object, dRL, that performs brick-wall dynamic range
limiting independently across each input channel.

dRL = limiter(thresholdValue) sets the Threshold property to
thresholdValue.

dRL = limiter(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: dRL = limiter('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRL, with AttackTime property set to 0.01 and SampleRate property
set to 16000.

 limiter System object

3-129

Properties

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

This property is tunable. You can change the value of this property even when the object
is locked.

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

x T
W

W
= -

- +Ê
ËÁ

ˆ
¯̃

¥()
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

This property is tunable. You can change the value of this property even when the object
is locked.

AttackTime — Attack time (s)
0 (default) | real scalar

3 System objects in Audio System Toolbox

3-130

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value
when the input goes above the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

MakeUpGainMode — Make-up gain mode
'Auto' (default) | 'Property'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' — Make-up gain is applied at the output of the dynamic range limiter such
that a steady-state 0 dB input has a 0 dB output.

• 'Property' — Make-up gain is set to the value specified in the MakeUpGain
property.

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during limiting. It is applied at the output of
the dynamic range limiter. This property is available when you set MakeUpGainMode to
'Property'.

This property is tunable. You can change the value of this property even when the object
is locked.

 limiter System object

3-131

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Perform dynamic range limiting
visualize Visualize static limiter characteristics of

System object

Examples

Limit Audio Signal

Use dynamic range limiting to suppress the volume of loud sounds.

3 System objects in Audio System Toolbox

3-132

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-44p1-stereo-11secs.mp3',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Set up the limiter to have a threshold of -15 dB, an attack time of 0.005 seconds, and a
release time of 0.1 seconds. Set make-up gain to 0 dB (default). To specify this value, set
the make-up gain mode to 'Property' but do not specify the MakeUpGain property. Use
the sample rate of your audio file reader.

dRL = limiter(-15,...

 'AttackTime',0.005,...

 'ReleaseTime',0.1,...

 'MakeUpGainMode','Property',...

 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the limiter.

visualize(dRL);

 limiter System object

3-133

Set up a time scope to visualize the original signal and the limited signal.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',1,...

 'BufferLength',44100*4,...

 'YLimits',[-1 1],...

 'ShowGrid',true,...

 'LayoutDimensions',[2,1],...

 'NumInputPorts',2,...

3 System objects in Audio System Toolbox

3-134

 'ShowLegend',true,...

 'Title',['Original vs. Limited Audio (top)'...

 ' and Limiter Gain in dB (bottom)']);

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)

 x = step(fileReader);

 [y,g] = step(dRL,x);

 step(deviceWriter,y);

 x1 = x(:,1);

 y1 = y(:,1);

 g1 = g(:,1);

 step(scope,[x1,y1],g1);

end

 limiter System object

3-135

See Also
noiseGate | compressor | expander | Limiter

Introduced in R2016a

3 System objects in Audio System Toolbox

3-136

clone
System object: limiter

Create copy of System object with same property values

Syntax

dRLclone = clone(dRL)

Description

dRLclone = clone(dRL) creates a dynamic range limiter System object, dRLclone,
with the same property values as dRL. If the original object is locked, then clone creates
a copy that is also locked. This copy has states initialized to the same values as the
original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

 configureMIDI

3-137

configureMIDI
System object: limiter

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRL)

configureMIDI(dRL,propName)

configureMIDI(dRL,propName,controlNumber)

configureMIDI(dRL,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRL) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range limiter System object, dRL, to MIDI
controls of your choice.

configureMIDI(dRL,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRL,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRL,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the lLimiter System object maps to a MIDI control with a
specified range.

Property Range Unit

Threshold –50 to 0 dB
KneeWidth 0 to 20 dB
AttackTime 0 to 4 seconds

3 System objects in Audio System Toolbox

3-138

Property Range Unit

ReleaseTime 0 to 4 seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

 createAudioPluginClass

3-139

createAudioPluginClass
System object: limiter

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRL)

createAudioPluginClass(dRL,pluginName)

Description

createAudioPluginClass(dRL) creates a System object plugin that implements the
functionality of the dynamicRangeLimiter System object, dRL. The name of the created
class is the limiter System object variable name followed by 'Plugin', for example,
dRLPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRL,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRL,'myLimiter') creates a System object
plugin with class name myLimiter.

Each tunable property of the limiter System object maps to a plugin parameter with a
default range.

Property Plugin Parameter Range Unit

Threshold –50 to 0 dB
KneeWidth 0 to 20 dB
AttackTime 0 to 4 s

3 System objects in Audio System Toolbox

3-140

Property Plugin Parameter Range Unit

ReleaseTime 0 to 4 s
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

–10 to 24 dB

Introduced in R2016a

 disconnectMIDI

3-141

disconnectMIDI
System object: limiter

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRL)

Description

disconnectMIDI(dRL) disconnects MIDI controls from your dynamic range limiter,
dRL. Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-142

getMIDIConnections
System object: limiter

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRL)

Description

connectionInfo = getMIDIConnections(dRL) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range limiter, dRL. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of dRL that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

 isLocked

3-143

isLocked
System object: limiter

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(dRL)

Description

L = isLocked(dRL) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the dynamic range limiter, dRL.

The dRL object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-144

release
System object: limiter

Enable property values and input characteristics to change

Syntax

release(dRL)

Description

release(dRL) releases system resources, such as memory, from your dynamic range
limiter, dRL. After you call release, all properties and input characteristics of dRL can
change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

 reset

3-145

reset
System object: limiter

Reset internal states of System object

Syntax

reset(dRL)

Description

reset(dRL) resets internal states of the dynamic range limiter, dRL, to their initial
values.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-146

step
System object: limiter

Perform dynamic range limiting

Syntax

y = step(dRL,x)

[y,g] = step(dRL,x)

Description

y = step(dRL,x) performs dynamic range limiting on the input signal, x, and returns
the limited signal, y. The type of dynamic range limiting is specified by the algorithm
and properties of the limiter System object, dRL.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRL,x) also returns the gain, in dB, applied at each input sample.

Introduced in R2016a

 visualize

3-147

visualize
System object: limiter

Visualize static limiter characteristics of System object

Syntax

visualize(dRL)

visualize(dRL,myInputRange)

Y = visualize(___)

Description

visualize(dRL) plots the static compression characteristic of the dynamic
range limiter, dRL. The method computes the dB output level for the input range
[-50:0.01:0] dB.

visualize(dRL,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-148

multibandParametricEQ System object

Multiband parametric equalizer

Description

The multibandParametricEQ System object performs multiband parametric
equalization independently across each channel of input using specified center
frequencies, gains, and quality factors. You can configure the System object with up to
10 bands. You can add low-shelf and high-shelf filters, as well as highpass (low-cut) and
lowpass (high-cut) filters.

To implement a multiband parametric equalizer:

1 Define and set up your multiband parametric equalizer. See “Construction” on page
3-148.

2 Call step to perform multiband parametric equalization on each channel of the
input signal according to the properties of your multibandParametricEQ object.
The input must be a real-valued, double-precision or single-precision matrix. The
multibandParametricEQ object treats each column of the input as an independent
channel.

Construction

mPEQ = multibandParametricEQ creates a System object, mPEQ, that performs
multiband parametric equalization.

mPEQ = multibandParametricEQ(Name,Value) sets each construction argument
or property Name to the specified Value. Unspecified properties and construction
arguments have default values.

Example: mPEQ = multibandParametricEQ('NumEQBands',3,'Frequencies',
[300,1200,5000]) creates a multiband parametric equalizer System object, mPEQ, with
NumEQBands set to 3 and the Frequencies property set to [300,1200,5000].

 multibandParametricEQ System object

3-149

Note: The value specified by NumEQBands must be the length of the row vectors specified
by Frequencies, QualityFactors, and PeakGains. During construction, the first
property you specify locks the value.

Construction Arguments

NumEQBands — Number of equalizer bands
3 (default) | integer in the range 1 to 10

Number of equalizer bands, specified as an integer in the range 1 to 10. The number of
equalizer bands does not include shelving filters, highpass filters, or lowpass filters.

NumEQBands must be set during construction. It cannot be modified after construction.

Example: mPEQ = multibandParametricEQ('NumEQBands',5) constructs a
multiband parametric equalizer with 5 bands.

EQOrder — Order of individual equalizer bands
2 (default) | even integer

Order of individual equalizer bands, specified as an even integer. All equalizer bands
have the same order.

EQOrder must be set during construction. It cannot be modified after construction.

Example: mPEQ = multibandParametricEQ('EQOrder',6) constructs a multiband
parametric equalizer with the default 3 bands, all of order 6.

HasLowShelfFilter — Low-shelf filter toggle
false (default) | true

Low-shelf filter toggle, specified as false or true.

• false — Do not include low-shelf filter in multiband parametric equalizer
implementation.

• true — Include low-shelf filter in multiband parametric equalizer implementation.

HasLowpassFilter must be set during construction. It cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasLowShelfFilter',true)
constructs a default multiband parametric equalizer with low-shelf filtering enabled.

3 System objects in Audio System Toolbox

3-150

HasHighShelfFilter — High-shelf filter toggle
false (default) | true

High-shelf filter toggle, specified as false or true.

• false — Do not include high-shelf filter in multiband parametric equalizer
implementation.

• true — Include high-shelf filter in multiband parametric equalizer implementation.

HasHighShelfFilter must be set during construction. It is cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasHighShelfFilter',true)
constructs a default multiband parametric equalizer with high-shelf filtering enabled.

HasLowpassFilter — Lowpass filter toggle
false (default) | true

Lowpass filter toggle, specified as false or true.

• false — Do not include lowpass filter in multiband parametric equalizer
implementation.

• true — Include lowpass filter in multiband parametric equalizer implementation.

HasLowpassFilter must be set during construction. It cannot be modified after
construction.
Example: mPEQ = multibandParametricEQ('HasLowpassFilter',true)
constructs a default multiband parametric equalizer with lowpass filtering enabled.

HasHighpassFilter — Highpass filter toggle
false (default) | true

Highpass filter toggle, specified as false or true.

• false — Do not include highpass filter in multiband parametric equalizer
implementation.

• true — Include highpass filter in multiband parametric equalizer implementation.

HasHighpassFilter must be set during construction. It cannot be modified after
construction.

 multibandParametricEQ System object

3-151

Example: mPEQ = multibandParametricEQ('HasHighpassFilter',true)
constructs a default multiband parametric equalizer with highpass filtering enabled.

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false — Runs the multiband parametric equalizer at the input sample rate.
• true — Runs the multiband parametric equalizer at two times the input sample rate.

Oversampling minimizes the frequency warping effects introduced by the bilinear
transformation.

A halfband interpolator implements oversampling before equalization. A halfband
decimator reduces the sample rate back to the input sampling rate after equalization.

Oversample must be set during construction. It cannot be modified after construction.

Example: mPEQ = multibandParametricEQ('Oversample',true) constructs a
default multiband parametric equalizer with oversampling enabled.

Properties

Multiband Equalizer

Frequencies — Center frequencies of equalizer bands (Hz)
[100,181,325] (default) | row vector of length NumEQBands

Center frequencies of equalizer bands in Hz, specified as a row vector of length
NumEQBands. The vector consists of real scalars in the range 0 to SampleRate/2.

This property is tunable. You can change the value of this property even when the object
is locked.

QualityFactors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector of length NumEQBands

Quality factors of equalizer bands, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range 0.2 to 700. Any values outside the range are
saturated.

3 System objects in Audio System Toolbox

3-152

This property is tunable. You can change the value of this property even when the object
is locked.

PeakGains — Peak or dip filter gains (dB)
[0,0,0] (default) | row vector of length NumEQBands

Peak or dip filter gains in dB, specified as a row vector of length NumEQBands. The vector
consists of real scalars in the range –Inf to 20. Values above 20 are saturated.

This property is tunable. You can change the value of this property even when the object
is locked.

Low-shelf Filter

LowShelfCutoff — Low-shelf filter cutoff (Hz)
200 (default) | scalar

Low-shelf filter cutoff in Hz, specified as a scalar greater than or equal to 0.

This property is available when you set HasLowShelfFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

LowShelfSlope — Low-shelf filter slope coefficient
1.5 (default) | real scalar in the range 0.1 to 5

Low-shelf filter slope coefficient, specified as a real scalar in the range 0.1 to 5. Values
outside the range are saturated.

This property is available when you set HasLowShelfFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

LowShelfGain — Low-shelf filter gain (dB)
0 (default) | real scalar in the range –12 to 12

Low-shelf filter gain in dB, specified as a real scalar in the range –12 to 12. Values
outside the range are saturated.

 multibandParametricEQ System object

3-153

This property is available when you set HasLowShelfFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

High-Shelf Filter

HighShelfCutoff — High-shelf filter cutoff (Hz)
15000 (default) | nonnegative real scalar

High-shelf filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

This property is available when you set HasHighShelfFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

HighShelfSlope — High-shelf slope coefficient
1.5 (default) | real scalar in the range 0.1 to 5

High-shelf filter slope coefficient, specified as a real scalar in the range 0.1 to 5. Values
outside the range are saturated.

This property is available when you set HasHighShelfFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

HighShelfGain — High-shelf filter gain (dB)
0 (default) | real scalar in the range –12 to 12

High-shelf filter gain in dB, specified as a real scalar in the range –12 to 12. Values
outside the range are saturated.

This property is available when you set HasHighShelfFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

3 System objects in Audio System Toolbox

3-154

Lowpass Filter

LowpassCutoff — Lowpass filter cutoff frequency (Hz)
18000 (default) | nonnegative real scalar

Lowpass filter cutoff frequency in Hz, specified as a real scalar greater than or equal to 0.

This property is available when you set HasLowpassFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

LowpassSlope — Lowpass filter slope (dB/octave)
12 (default) | real scalar in the range [0:6:48]

Lowpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded.

This property is available when you set HasLowpassFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

Highpass Filter

HighpassCutoff — Highpass filter cutoff frequency (Hz)
20 (default) | nonnegative real scalar

Highpass filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

This property is available when you set HasHighpassFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

HighpassSlope — Highpass filter slope (dB/octave)
30 (default) | real scalar in the range [0:6:48]

Highpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded.

 multibandParametricEQ System object

3-155

This property is available when you set HasHighpassFilter to true during
construction.

This property is tunable. You can change the value of this property even when the object
is locked.

Sampling

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

isLocked Locked status for input attributes and
nontunable properties

release Enable property values and input
characteristics to change

reset Reset internal states of System object
step Perform multiband parametric equalization
visualize Visualize magnitude response of System

object

Examples

Multiband Parametric Equalization

Create audio file reader and audio device writer System objects™. Use the sample rate of
the reader as the sample rate of the writer. Call setup to reduce the computational load
of initialization in an audio stream loop.

3 System objects in Audio System Toolbox

3-156

frameLength = 512;

fileReader = dsp.AudioFileReader(...

 'Filename','RockDrums-48-stereo-11secs.mp3',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,ones(frameLength,2));

Construct a three-band parametric equalizer with a high-shelf filter.

mPEQ = multibandParametricEQ(...

 'NumEQBands',3,...

 'Frequencies',[300,1200,5000],...

 'QualityFactors',[1,1,1],...

 'PeakGains',[8,-10,7],...

 'HasHighShelfFilter',true,...

 'HighShelfCutoff',14000,...

 'HighShelfSlope',0.3,...

 'HighShelfGain',-5,...

 'SampleRate',fileReader.SampleRate);

Visualize the magnitude frequency response of your multiband parametric equalizer.

visualize(mPEQ);

 multibandParametricEQ System object

3-157

Play the equalized audio signal. Update the peak gains of your equalizer band to hear the
effect of the equalizer and visualize the changing magnitude response.

count = 0;

while ~isDone(fileReader)

 originalSignal = step(fileReader);

 equalizedSignal = step(mPEQ,originalSignal);

 play(deviceWriter,equalizedSignal);

 if mod(count,100) == 0

 mPEQ.PeakGains(1) = mPEQ.PeakGains(1) - 1.5;

 mPEQ.PeakGains(2) = mPEQ.PeakGains(2) + 1.5;

 mPEQ.PeakGains(3) = mPEQ.PeakGains(3) - 1.5;

 end

 count = count + 1;

 visualize(mPEQ)

3 System objects in Audio System Toolbox

3-158

end

Oversample Audio Signal

Reduce warping by specifying your multibandParametricEQ System object™ to
perform oversampling before equalization.

Create a one-band equalizer. Visualize the equalizer band as its center frequency
approaches the Nyquist rate.

mPEQ = multibandParametricEQ(...

 'NumEQBands',1,...

 'Frequencies',9.5e3,...

 'PeakGains',10);

visualize(mPEQ)

 multibandParametricEQ System object

3-159

for i = 1:1000

 mPEQ.Frequencies = mPEQ.Frequencies + 8;

end

The equalizer band is warped.

Create a one-band equalizer with Oversample set to true. Visualize the equalizer band
as its center frequency approaches the Nyquist rate.

mPEQOversampled = multibandParametricEQ(...

 'NumEQBands',1,...

 'Frequencies',9.5e3,...

 'PeakGains',10,...

 'Oversample',true);

visualize(mPEQOversampled)

3 System objects in Audio System Toolbox

3-160

for i = 1:1000

 mPEQOversampled.Frequencies = mPEQOversampled.Frequencies + 8;

end

Warping is reduced.

See Also
designParamEQ | designShelvingEQ | designVarSlopeFilter | Parametric EQ
Filter

Introduced in R2016a

 clone

3-161

clone
System object: multibandParametricEQ

Create copy of System object with same property values

Syntax

mPEQClone = clone(mPEQ)

Description

mPEQClone = clone(mPEQ) creates a multibandParametricEQ System object,
mPEQclone, with the same property values as mPEQ. If the original object is locked, then
clone creates a copy that is also locked. This copy has states initialized to the same
values as the original. If the original object is not locked, then clone creates a new
unlocked object with uninitialized states.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-162

isLocked
System object: multibandParametricEQ

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(mPEQ)

Description

L = isLocked(mPEQ) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the multiband parametric equalizer, mPEQ.

The mPEQ object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

 release

3-163

release
System object: multibandParametricEQ

Enable property values and input characteristics to change

Syntax

release(mPEQ)

Description

release(mPEQ) releases system resources, such as memory, from your multiband
parametric equalizer, mPEQ. After you call release, all properties and input
characteristics of mPEQ can change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-164

reset
System object: multibandParametricEQ

Reset internal states of System object

Syntax

reset(mPEQ)

Description

reset(mPEQ) resets internal states of the multiband parametric equalizer, mPEQ, to
their initial values.

Introduced in R2016a

 step

3-165

step
System object: multibandParametricEQ

Perform multiband parametric equalization

Syntax

y = step(mPEQ,x)

Description

y = step(mPEQ,x) performs multiband parametric equalization on the input signal, x,
and returns the filtered signal, y. The type of equalization is specified by the algorithm
and properties of the multibandParametricEQ System object, mPEQ.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-166

visualize
System object: multibandParametricEQ

Visualize magnitude response of System object

Syntax

visualize(mPEQ)

visualize(mPEQ,N)

Description

visualize(mPEQ) plots the magnitude response of the multiband parametric equalizer.
The plot includes any enabled shelving filters, lowpass filters, or highpass filters.

visualize(mPEQ,N) specifies an N-point FFT used to calculate the magnitude response.
The default is 2048.

Introduced in R2016a

 noiseGate System object

3-167

noiseGate System object

Dynamic range gate

Description

The noiseGate System object performs dynamic range gating independently across
each input channel. Dynamic range gating suppresses signals below a given threshold.
It uses specified attack, release, and hold times to achieve a smooth applied gain curve.
Properties of the noiseGate System object specify the type of dynamic range gating.

To perform dynamic range gating on your input:

1 Define and set up your dynamic range gate. See “Construction” on page 3-167.
2 Call step to perform dynamic range gating on each channel of the input signal

according to the properties of your noiseGate object. The input must be a real-
valued, double-precision or single-precision matrix. The noiseGate object treats
each column of the input as an independent channel.

Construction

dRG = noiseGate creates a System object, dRG, that performs dynamic range gating
independently across each input channel.

dRG = noiseGate(thresholdValue) sets the Threshold property to
thresholdValue.

dRG = noiseGate(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: dRG = noiseGate('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRG, with the AttackTime property set to 0.01, and the SampleRate
property set to 16000.

3 System objects in Audio System Toolbox

3-168

Properties

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

This property is tunable. You can change the value of this property even when the object
is locked.

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value
when the input goes below the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

ReleaseTime — Release time (s)
0.02 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

This property is tunable. You can change the value of this property even when the object
is locked.

HoldTime — Hold time (s)
0.05 (default) | real finite scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

 noiseGate System object

3-169

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Perform dynamic range gating
visualize Visualize static gate characteristics of

System object

Examples

Gate Audio Signal

Use dynamic range gating to attenuate background noise from an audio signal.

3 System objects in Audio System Toolbox

3-170

Set up the audio file reader and audio device writer System objects.

frameLength = 1024;

fileReader = dsp.AudioFileReader(...

 'Filename','Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)

 x = step(fileReader);

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 step(deviceWriter,xCorrupted);

end

release(fileReader);

Set up a dynamic range gate with a threshold of -25 dB, an attack time of 0.01 seconds,
a release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your
audio file reader.

gate = noiseGate(-25,...

 'AttackTime',0.01,...

 'ReleaseTime',0.02,...

 'HoldTime',0,...

 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the gate.

visualize(gate);

 noiseGate System object

3-171

Set up a time scope to visualize the signal before and after dynamic range gating.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1 1],...

 'ShowGrid',true,...

 'ShowLegend',true,...

 'Title','Corrupted vs. Gated Audio');

3 System objects in Audio System Toolbox

3-172

Play the processed audio and visualize it on scope.

while ~isDone(fileReader)

 x = step(fileReader) + (1e-2/4)*randn(frameLength,1);

 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 y = step(gate,xCorrupted);

 step(deviceWriter,y);

 step(scope,[xCorrupted,y]);

end

 noiseGate System object

3-173

See Also
expander | compressor | limiter | Noise Gate

Introduced in R2016a

3 System objects in Audio System Toolbox

3-174

clone
System object: noiseGate

Create copy of System object with same property values

Syntax

dRGclone = clone(dRG)

Description

dRGclone = clone(dRG) creates a dynamic range gate System object, dRGclone, with
the same property values as dRG. If the original object is locked, then clone creates
a copy that is also locked. This copy has states initialized to the same values as the
original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

 configureMIDI

3-175

configureMIDI
System object: noiseGate

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(dRG)

configureMIDI(dRG,propName)

configureMIDI(dRG,propName,controlNumber)

configureMIDI(dRG,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(dRG) starts a MIDI configuration user interface (UI). Use the UI to
synchronize tunable properties of the dynamic range gate System object, dRG, to MIDI
controls of your choice.

configureMIDI(dRG,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(dRG,propName,controlNumber) makes the property respond to the
MIDI control specified by controlNumber.

configureMIDI(dRG,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the noiseGate System object maps to MIDI controls with a
specified range.

Property Range Unit

Threshold –140 to 0 dB
AttackTime 0 to 4 seconds
ReleaseTime 0 to 4 seconds

3 System objects in Audio System Toolbox

3-176

Property Range Unit

HoldTime 0 to 4 seconds

Introduced in R2016a

 createAudioPluginClass

3-177

createAudioPluginClass
System object: noiseGate

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(dRG)

createAudioPluginClass(dRG,pluginName)

Description

createAudioPluginClass(dRG) creates a System object plugin that implements
the functionality of the noiseGate System object, dRG. The name of the created class
is the noiseGate System object variable name followed by 'Plugin', for example,
dRGPlugin.

Note: If the object is locked, the number of input and output channels of the plugin is
equal to the number of channels of the object. Otherwise, the number of channels is equal
to 2.

createAudioPluginClass(dRG,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(dRG,'myGate') creates a System object plugin
with class name myGate.

Each tunable property of the noiseGate System object maps to a plugin parameter with
a default range.

Property Plugin Parameter Range Unit

Threshold –140 to 0 dB
AttackTime 0 to 4 s
ReleaseTime 0 to 4 s

3 System objects in Audio System Toolbox

3-178

Property Plugin Parameter Range Unit

HoldTime 0 to 4 s

Introduced in R2016a

 disconnectMIDI

3-179

disconnectMIDI
System object: noiseGate

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(dRG)

Description

disconnectMIDI(dRG) disconnects MIDI controls from your dynamic range gate, dRG.
Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-180

getMIDIConnections
System object: noiseGate

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(dRG)

Description

connectionInfo = getMIDIConnections(dRG) returns a structure,
connectionInfo, containing information about the MIDI connections for your dynamic
range gate, dRG. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each tunable
property of dRG that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

 isLocked

3-181

isLocked
Locked status for input attributes and nontunable properties

Syntax

L = isLocked(dRG)

Description

L = isLocked(dRG) returns a logical value, L, that indicates whether input attributes
and nontunable properties are locked for the dynamic range gate, dRG.

The dRG object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-182

release
System object: noiseGate

Enable property values and input characteristics to change

Syntax

release(dRG)

Description

release(dRG) releases system resources, such as memory, from your dynamic range
gate, dRG. After you call release, all properties and input characteristics of dRG can
change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

 reset

3-183

reset
System object: noiseGate

Reset internal states of System object

Syntax

reset(dRG)

Description

reset(dRG) resets internal states of the dynamic range gate, dRG, to their initial values.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-184

step
System object: noiseGate

Perform dynamic range gating

Syntax

y = step(dRG,x)

[y,g] = step(dRG,x)

Description

y = step(dRG,x) performs dynamic range gating on the input signal, x, and returns
the gated signal, y. The type of dynamic range gating is specified by the algorithm and
properties of the noiseGate System object, dRG.

x must be a real-valued, double-precision or single-precision matrix. The System object
treats each column of the input as an independent channel.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

[y,g] = step(dRG,x) also returns the gain, in dB, applied at each input sample.

Introduced in R2016a

 visualize

3-185

visualize
System object: noiseGate

Visualize static gate characteristics of System object

Syntax

visualize(dRG)

visualize(dRG,myInputRange)

Y = visualize(___)

Description

visualize(dRG) plots the static gate characteristics of the dynamic range gate, dRG.
The method computes the dB output level for the input range [0:0.001:1] dB.

visualize(dRG,myInputRange) enables you to specify the input range in dB. Specify
myInputRange as a vector of ascending values.

Y = visualize(___) returns the dB output level, Y, corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-186

reverberator System object

Add reverberation to audio signal

Description

The reverberator System object adds reverberation to mono or stereo audio signals.
Properties of the reverberator System object specify the “Reverberation Model” on
page 3-192 used.

To add reverberation to your input:

1 Define and set up your reverberator. See “Construction” on page 3-186.
2 Call step to add reverberation to the input signal according to the properties of your

reverberator object. The input must be a real-valued, double-precision or single-
precision matrix. The input matrix must have one or two columns, corresponding
to a mono or stereo signal, respectively. The output matrix always has two columns
(stereo).

Construction

reverb = reverberator creates a System object, reverb, that adds artificial
reverberation to an audio signal.

reverb = reverberator(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Example: reverb = reverberator('PreDelay',0.5,'WetDryMix',1) creates
a System object, reverb, with the PreDelay property set to 0.5 and the WetDryMix
property set to 1.

Properties

PreDelay — Pre-delay for reverberation (s)
0 (default) | real positive scalar

 reverberator System object

3-187

Pre-delay for reverberation in seconds, specified as a real scalar in the range 0 to 1.

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of PreDelay is proportional to the size of the room being modeled.

This property is tunable. You can change the value of this property even when the object
is locked.

HighCutFrequency — Lowpass filter cutoff (Hz)
20000 (default) | real positive scalar

Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to
SampleRate

2

Ê
ËÁ

ˆ
¯̃

.

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

This property is tunable. You can change the value of this property even when the object
is locked.

Diffusion — Density of reverb tail
0.5 (default) | real positive scalar

Density of reverb tail, specified as a real positive scalar in the range 0 to 1.

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

This property is tunable. You can change the value of this property even when the object
is locked.

DecayFactor — Decay factor of reverb tail
0.5 (default) | real positive scalar

Decay factor of reverb tail, specified as a real positive scalar in the range 0 to 1.

DecayFactor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

3 System objects in Audio System Toolbox

3-188

This property is tunable. You can change the value of this property even when the object
is locked.

HighFrequencyDamping — High-frequency damping
0.0005 (default) | real scalar

High-frequency damping, specified as a real positive scalar in the range 0 to 1.

HighFrequencyDamping is proportional to the attenuation of high frequencies in the
reverberation output. Setting HighFrequencyDamping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

This property is tunable. You can change the value of this property even when the object
is locked.

WetDryMix — Wet-dry mix
0.3 (default) | real scalar

Wet-dry mix, specified as a real positive scalar in the range 0 to 1.

Wet-dry mix is the ratio of wet (reverberated) to dry (original) signal that your
reverberator System object outputs.

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

Methods

clone Create copy of System object with same
property values

 reverberator System object

3-189

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Add artificial reverberation

Examples

Add Reverberation to Audio Signal

Use the reverberator System object™ to add artificial reverberation to an audio signal
read from a file.

Construct the audio file reader and audio device writer System objects. Use the sample
rate of the reader as the sample rate of the writer.

fileReader = dsp.AudioFileReader(...

 'FunkyDrums-44p1-stereo-25secs.mp3',...

 'SamplesPerFrame',1024);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

Play 10 seconds of the audio signal through your device.

tic

while toc < 10

 audio = step(fileReader);

 play(deviceWriter,audio);

end

3 System objects in Audio System Toolbox

3-190

release(fileReader);

Construct a reverberator System object with default settings.

reverb = reverberator

reverb =

 reverberator with properties:

 PreDelay: 0

 HighCutFrequency: 20000

 Diffusion: 0.5000

 DecayFactor: 0.5000

 HighFrequencyDamping: 5.0000e-04

 WetDryMix: 0.3000

 SampleRate: 44100

Construct a time scope to visualize the original audio signal and the audio signal with
added artificial reverberation.

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpanOverrunAction','Scroll',...

 'TimeSpan',10,...

 'BufferLength',1.5e6,...

 'YLimits',[-1,1],...

 'ShowGrid',true,...

 'ShowLegend',true,...

 'Title','Audio with Reverberation vs. Original');

Play the audio signal with artificial reverberation. Visualize the audio with reverberation
and the original audio.

while ~isDone(fileReader)

 audio = step(fileReader);

 audioWithReverb = step(reverb,audio);

 step(deviceWriter,audioWithReverb);

 step(scope,[audioWithReverb(:,1),audio(:,1)]);

end

 reverberator System object

3-191

Algorithms

The algorithm to add reverberation is based on the plate-class reverberation topology
described in [1].

3 System objects in Audio System Toolbox

3-192

Definitions

Reverberation Model

Reverberation refers to the buildup and decay of reflected audio waves in a given space.
Reverberation models are used in digital environments to mimic the physical effect of
reverberation.

References

[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the
Audio Engineering Society. Vol. 45, Issue 9, pp. 660–684.

See Also
generateAudioPlugin | Reverberator | validateAudioPlugin

Introduced in R2016a

 clone

3-193

clone
System object: reverberator

Create copy of System object with same property values

Syntax

reverbClone = clone(reverb)

Description

reverbClone = clone(reverb) creates a reverberator System object, reverbClone,
with the same property values as reverb. If the original object is locked, then clone
creates a copy that is also locked. This copy has states initialized to the same values as
the original. If the original object is not locked, then clone creates a new unlocked object
with uninitialized states.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-194

configureMIDI
System object: reverberator

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(reverb)

configureMIDI(reverb,propName)

configureMIDI(reverb,propName,controlNumber)

configureMIDI(reverb,propName,controlNumber,'DeviceName',deviceName)

Description

configureMIDI(reverb) starts a MIDI configuration user interface (UI). Use the UI
to synchronize tunable properties of the reverberator System object, reverb, to MIDI
controls of your choice.

configureMIDI(reverb,propName) makes the System object property, propName,
respond to any control on the default MIDI device.

configureMIDI(reverb,propName,controlNumber) makes the property respond to
the MIDI control specified by controlNumber.

configureMIDI(reverb,propName,controlNumber,'DeviceName',deviceName)

makes the property respond to the MIDI control specified by controlNumber on the
device specified by deviceName.

Each tunable property of the reverberator System object maps to MIDI controls with a
specified range.

Property Range Unit

PreDelay 0 to 1 s
HighCutFrequency 20 to 20,000 (log scale) Hz
Diffusion 0 to 1 none

 configureMIDI

3-195

Property Range Unit

DecayFactor 0 to 1 none
HighFrequencyDamping 0 to 1 none
WetDryMix 0 to 1 none

Introduced in R2016a

3 System objects in Audio System Toolbox

3-196

createAudioPluginClass
System object: reverberator

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(reverb)

createAudioPluginClass(reverb,pluginName)

Description

createAudioPluginClass(reverb) creates a System object plugin that implements
the functionality of the reverberator System object, reverb. The name of the created
class is the reverberator System object variable name followed by 'Plugin', for
example, reverbPlugin.

Note: If the object is locked, the number of input channels of the plugin is equal to the
number of channels of the object. Otherwise, the number of channels is equal to 2. The
number of output channels of the plugin is always equal to 2.

createAudioPluginClass(reverb,pluginName) specifies the name of your created
System object plugin class.

Example: createAudioPluginClass(reverb,'concertHall') creates a System
object plugin with class name concertHall.

Each tunable property of the reverberator System object maps to a plugin parameter
with a default range.

Property Plugin Parameter Range Unit

PreDelay 0 to 1 s
HighCutFrequency 20 to 20,000 (log scale) Hz
Diffusion 0 to 1 none

 createAudioPluginClass

3-197

Property Plugin Parameter Range Unit

DecayFactor 0 to 1 none
HighFrequencyDamping 0 to 1 none
WetDryMix 0 to 1 none

Introduced in R2016a

3 System objects in Audio System Toolbox

3-198

disconnectMIDI
System object: reverberator

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(reverb)

Description

disconnectMIDI(reverb) disconnects MIDI controls from your reverberator, reverb.
Only those MIDI connections established using configureMIDI are disconnected.

Introduced in R2016a

 getMIDIConnections

3-199

getMIDIConnections
System object: reverberator

Get MIDI connection information

Syntax

connectionInfo = getMIDIConnections(reverb)

Description

connectionInfo = getMIDIConnections(reverb) returns a structure,
connectionInfo, containing information about the MIDI connections for your
reverberator, reverb. Only those MIDI connections established using configureMIDI
are returned. The connectionInfo structure contains a substructure for each tunable
property of reverb that has established MIDI connections. Each substructure contains
the control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Introduced in R2016a

3 System objects in Audio System Toolbox

3-200

isLocked
System object: reverberator

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(reverb)

Description

L = isLocked(reverb) returns a logical value, L, that indicates whether input
attributes and nontunable properties are locked for the reverberator, reverb.

The reverb object performs an internal initialization the first time you execute step.
The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

 release

3-201

release
System object: reverberator

Enable property values and input characteristics to change

Syntax

release(reverb)

Description

release(reverb) releases system resources, such as memory, from your reverberator,
reverb. After you call release, all properties and input characteristics of reverb can
change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-202

reset
System object: reverberator

Reset internal states of System object

Syntax

reset(reverb)

Description

reset(reverb) resets internal states of the reverberator, reverb, to their initial
values.

Introduced in R2016a

 step

3-203

step
System object: reverberator

Add artificial reverberation

Syntax

y = step(reverb,x)

Description

y = step(reverb,x) adds artificial reverberation to the input signal, x, and returns
the mixed signal, y. The type of reverberation is specified by the algorithm and
properties of the reverberator System object, reverb.

x must be a real-valued, double-precision or single-precision matrix with one or two
columns. The output is always a stereo signal (two columns).

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-204

wavetableSynthesizer System object

Generate periodic signals from single-cycle waveforms

Description

The wavetableSynthesizer System object generates a periodic signal with tunable
properties. The periodic signal is defined by a single-cycle waveform cached as the
Wavetable property of your wavetableSynthesizer object.

To generate a periodic signal:

1 Define and set up your wavetable synthesizer. See “Construction” on page 3-204.
2 Call step to generate a signal according to the properties of your

wavetableSynthesizer object. The object has internal memory suited to frame-
based processing.

Construction

waveSynth = wavetableSynthesizer creates a wavetable synthesizer System object,
waveSynth, with default property values.

waveSynth = wavetableSynthesizer(wavetableValue) sets the Wavetable
property to wavetableValue.

waveSynth = wavetableSynthesizer(wavetableValue, frequencyValue) sets
the Frequency property to frequencyValue.

waveSynth = wavetableSynthesizer(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Example: waveSynth = wavetableSynthesizer('Amplitude',2,'DCOffset',
2.5) creates a System object, waveSynth, that generates sine waveforms using the
default Wavetable (a single-cycle sinusoid), with Amplitude set to 2 and DCOffset set
to 2.5.

 wavetableSynthesizer System object

3-205

Properties

Wavetable — Single-cycle waveform
sin(2*pi*(0:511)/512) (default) | vector of real values

Single-cycle waveform, specified as a vector of real values. The algorithm of the
wavetableSynthesizer indexes into the single-cycle waveform to synthesize a periodic
wave.

This property is semi-tunable. You can tune the values of the wavetable when the object
is locked. However, you cannot tune the length of the wavetable when the object is
locked.

Frequency — Frequency of generated signal (Hz)
100 (default) | real scalar

Frequency of generated signal in Hz, specified as a real scalar greater than or equal to 0.

This property is tunable. You can change the value of this property even when the object
is locked.

Amplitude — Amplitude of generated signal
1 (default) | real scalar

Amplitude of generated signal, specified as a real scalar greater than or equal to 0.

The generated signal is multiplied by the value specified by Amplitude at the output,
before DC offset is applied.

This property is tunable. You can change the value of this property even when the object
is locked.

PhaseOffset — Normalized phase offset of generated signal
0 (default) | real scalar

Normalized phase offset of generated signal, specified as a real scalar with values in the
range 0 to 1. The range is a normalized 2π radians interval.

This property is not tunable. You cannot change the value of this property when the
object is locked.

3 System objects in Audio System Toolbox

3-206

DCOffset — Value added to each element of generated signal
0 (default) | real scalar

Value added to each element of the generated signal, specified as a real scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range 1 to 192,000.

This property determines the vector length that the step method of your
wavetableSynthesizer object outputs.

This property is tunable. You can change the value of this property even when the object
is locked.

SampleRate — Sample rate of generated signal (Hz)
44100 (default) | real positive scalar

Sample rate of generated signal in Hz, specified as a real positive scalar.

This property is tunable. You can change the value of this property even when the object
is locked.

OutputDataType — Data type of generated signal
'double' (default) | 'single'

Data type of generated signal, specified as 'double' or 'single'.

This property is not tunable. You cannot change the value of this property when the
object is locked.

Methods

clone Create copy of System object with same
property values

 wavetableSynthesizer System object

3-207

configureMIDI Configure MIDI connections between
System object and MIDI controller

createAudioPluginClass Create audio plugin class that implements
functionality of System object

disconnectMIDI Disconnect MIDI controls from System
object

getMIDIConnections Get MIDI connection information
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset internal states of System object
step Generate periodic signals from single-cycle

waveforms

Examples

Generate Variable-Frequency Staircase Wave

Define and plot a single-cycle waveform.

values = -1:.1:1;

singleCycleWave = ones(100,1) * values;

singleCycleWave = reshape(singleCycleWave,numel(singleCycleWave),1);

plot(singleCycleWave);

xlabel('Index');

ylabel('Amplitude');

3 System objects in Audio System Toolbox

3-208

Create a wavetable synthesizer, waveSynth, to generate a staircase wave using the
single-cycle waveform. Specify a frequency of 10 Hz.

waveSynth = wavetableSynthesizer(singleCycleWave,10);

Create a time scope to visualize the staircase wave generated by waveSynth.

scope = dsp.TimeScope(...

 'SampleRate',waveSynth.SampleRate,...

 'TimeSpan',.1,...

 'YLimits',[-1.5,1.5],...

 'TimeSpanOverrunAction', 'Scroll', ...

 'ShowGrid',true,...

 'Title','Variable-Frequency Staircase Wave');

 wavetableSynthesizer System object

3-209

Place the wavetable synthesizer in an audio stream loop. Increase the frequency of your
staircase wave in 10 Hz increments.

counter = 0;

while (counter < 1e4)

 counter = counter + 1;

 staircaseWave = step(waveSynth);

 step(scope,staircaseWave);

 if mod(counter,1000)==0

 waveSynth.Frequency = waveSynth.Frequency + 10;

 end

end

3 System objects in Audio System Toolbox

3-210

Algorithms

The wavetable synthesizer System object synthesizes periodic signals using a cached
single-cycle waveform, specified waveform properties, and phase memory.

 wavetableSynthesizer System object

3-211

1 Compute the increment step size,

increment
Frequency

SampleRate
N= ¥ ,

where N is the number of elements in your wavetable.
2 Compute Wavetable index,

index n
index n increment

index n increment N

if

el
[]

[]

[]
=

- +

- + -

Ï
Ì
Ó

1

1 sse

index n N[]
,

- <1

for 2 £ £n SamplesPerFrame . The PhaseOffset property determines index[n=1].
3 Index into the Wavetable and perform linear interpolation:

w
Wavetable Wavetable index fraction Wavetable inlow

=
-() ¥ +[] [] [1 ddex

Wavetable index Wavetable index fractio

low

high low

]

[] []-()¥ nn Wavetable index

if

else

index N

low

high

+

>Ï
Ì
Ô

ÓÔ []
.

• index floor index nlow = +([])1

• index indexhigh low= + 1

• fraction index floor index= - ()

4 Multiply by Amplitude and add DCOffset.

wave w Amplitude DCOffset= ¥ +

3 System objects in Audio System Toolbox

3-212

See Also
audioOscillator

Introduced in R2016a

 clone

3-213

clone
System object: wavetableSynthesizer

Create copy of System object with same property values

Syntax

waveSynthClone = clone(waveSynth)

Description

waveSynthClone = clone(waveSynth) creates a wavetableSynthesizer System
object, waveSynthClone, with the same property values as waveSynth. If the original
object is locked, then clone creates a copy that is also locked. This copy has states
initialized to the same values as the original. If the original object is not locked, then
clone creates a new unlocked object with uninitialized states.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-214

configureMIDI
System object: wavetableSynthesizer

Configure MIDI connections between System object and MIDI controller

Syntax

configureMIDI(waveSynth)

configureMIDI(waveSynth,propName)

configureMIDI(waveSynth,propName,controlNumber)

configureMIDI(waveSynth,propName,controlNumber,'DeviceName',

deviceName)

Description

configureMIDI(waveSynth) starts a MIDI configuration user interface (UI). Use the
UI to synchronize tunable properties of the wavetableSynthesizer System object,
waveSynth, to MIDI controls of your choice.

configureMIDI(waveSynth,propName) makes the System object property,
propName, respond to any control on the default MIDI device.

configureMIDI(waveSynth,propName,controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI(waveSynth,propName,controlNumber,'DeviceName',

deviceName) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceName.

Each tunable property of the wavetableSynthesizer System object maps to MIDI
controls with a specified range.

Property Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear

 configureMIDI

3-215

Introduced in R2016a

3 System objects in Audio System Toolbox

3-216

createAudioPluginClass
System object: wavetableSynthesizer

Create audio plugin class that implements functionality of System object

Syntax

createAudioPluginClass(waveSynth)

createAudioPluginClass(waveSynth,pluginName)

Description

createAudioPluginClass(waveSynth) creates a System object source plugin
that implements the functionality of the wavetableSynthesizer System object,
waveSynth. The name of the created class is the wavetableSynthesizer System
object variable name followed by 'Plugin', for example, waveSynthPlugin. By default,
the created class outputs a one-channel (column) matrix.

createAudioPluginClass(waveSynth,pluginName) specifies the name of your
created System object source plugin class.

Example: createAudioPluginClass(waveSynth,'myWavetableSynthesizer')
creates a System object source plugin with class name myWavetableSynthesizer.

Each tunable property of the wavetableSynthesizer System object maps to a plugin
parameter with a default range.

Property Plugin Parameter Range Mapping

Frequency 0.1 Hz to 20 kHz log
Amplitude 0 to 10 linear
DCOffset –10 to 10 linear

Introduced in R2016a

 disconnectMIDI

3-217

disconnectMIDI
System object: wavetableSynthesizer

Disconnect MIDI controls from System object

Syntax

disconnectMIDI(waveSynth)

Description

disconnectMIDI(waveSynth) disconnects MIDI controls from your wavetable
synthesizer, waveSynth. Only those MIDI connections established using
configureMIDI are disconnected.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-218

getMIDIConnections
System object: wavetableSynthesizer

Get MIDI connection information

Syntax

connectionInfo= getMIDIConnections(waveSynth)

Description

connectionInfo= getMIDIConnections(waveSynth) returns a structure,
connectionInfo, containing information about the MIDI connections for your
wavetable synthesizer, waveSynth. Only those MIDI connections established using
configureMIDI are returned. The connectionInfo structure contains a substructure
for each tunable property of waveSynth that has established MIDI connections. Each
substructure contains the control number, the device name of the corresponding MIDI
control, and the property mapping information (mapping rule, minimum value, and
maximum value).

Introduced in R2016a

 isLocked

3-219

isLocked
System object: wavetableSynthesizer

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(waveSynth)

Description

L = isLocked(waveSynth) returns a logical value, L, that indicates whether
input attributes and nontunable properties are locked for the wavetable synthesizer,
waveSynth.

The waveSynth object performs an internal initialization the first time you execute
step. The initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After the object is locked, the
isLocked method returns a true value.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-220

release
System object: wavetableSynthesizer

Enable property values and input characteristics to change

Syntax

release(waveSynth)

Description

release(waveSynth) releases system resources of your wavetable synthesizer,
waveSynth. Resources include memory, file handles, and hardware connections. After
you call release, all properties and input characteristics of waveSynth can change.

Note: Once you call release on a System object, subsequent calls to setup, step,
reset, or release do not support code generation.

Introduced in R2016a

 reset

3-221

reset
System object: wavetableSynthesizer

Reset internal states of System object

Syntax

reset(waveSynth)

Description

reset(waveSynth) resets internal states of the wavetable synthesizer, waveSynth, to
their initial values.

Introduced in R2016a

3 System objects in Audio System Toolbox

3-222

step
System object: wavetableSynthesizer

Generate periodic signals from single-cycle waveforms

Syntax

y = step(waveSynth)

Description

y = step(waveSynth) generates a periodic signal, y. The type of signal is specified
by the algorithm and properties of the wavetableSynthesizer System object,
waveSynth.

Note: The System object performs an internal initialization the first time you execute
step. This initialization locks nontunable properties and input specifications, such as
the dimensions, complexity, and data type. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Introduced in R2016a

4

Classes in Audio System Toolbox

4 Classes in Audio System Toolbox

4-2

audioPlugin class

Base class for audio plugins

Description

audioPlugin is the base class for audio plugins. In your class definition file, you must
subclass your object from this base class or from the audioPluginSource class, which
inherits from audioPlugin. Subclassing enables you to inherit the attributes necessary
to generate plugins and access Audio System Toolbox functionality.

To inherit from the audioPlugin base class directly, type this syntax as the first line of
your class definition file:

classdef myAudioPlugin < audioPlugin

myAudioPlugin is the name of your object.

For a tutorial on designing audio plugins, see “Design an Audio Plugin”.

Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

(MATLAB environment only)

Copy Semantics

Handle. To learn how handle classes affect copy operations, see “Copying Objects” in the
MATLAB documentation.

Examples

Design Valid Audio Plugin

Design a valid basic audio plugin class

 audioPlugin class

4-3

Terminology:

• A valid audio plugin is one that can be deployed in a digital audio workstation (DAW)
environment. To validate it, use the validateAudioPlugin function. To generate it,
use the generateAudioPlugin function.

• A basic audio plugin inherits from the audioPlugin class but not the
matlab.System class.

Define a basic audio plugin class that inherits from audioPlugin.

classdef myAudioPlugin < audioPlugin

end

Add a processing function to your plugin class.

All valid audio plugins include a processing function. For basic audio plugins, the
processing function is named process. The processing function is where audio
processing occurs. It always has an output.

classdef myAudioPlugin < audioPlugin

 methods

 function out = process(~,in)

 out = in;

 end

 end

end

Design Valid Audio Plugin That Uses getSampleRate

Design an audioPlugin class that uses the getSampleRate method to get the sample
rate at which the plugin is run. The plugin in this example, simpleStrobe, uses the
sample rate to determine a constant 50 ms strobe period.

classdef simpleStrobe < audioPlugin

 % simpleStrobe Add audio strobe effect

 % Add a strobe effect by gain switching between 0 and 1 in

 % 50 ms increments. Although the input sample rate can change,

 % the strobe period remains constant.

 %

 % simpleStrobe properties:

 % period - Number of samples between gain switches

 % gain - Gain multiplier, one or zero

 % count - Number of samples since last gain switch

 %

4 Classes in Audio System Toolbox

4-4

 %

 % simpleStrobe methods:

 % process - Multiply input frame by gain, element by element

 % reset - Reset count and gain to initial conditions

 % and get sample rate

 properties

 Period = 44100*0.05;

 Gain = 1;

 end

 properties (Access = private)

 Count = 1;

 end

 methods

 function out = process(plugin,in)

 for i = 1:size(in,1)

 if plugin.Count == plugin.Period

 plugin.Gain = 1 - plugin.Gain;

 plugin.Count = 1;

 end

 in(i,:) = in(i,:)*plugin.Gain;

 plugin.Count = plugin.Count + 1;

 end

 out = in;

 end

 function reset(plugin)

 plugin.Period = floor(getSampleRate(plugin)*0.05);

 plugin.Count = 1;

 plugin.Gain = 1;

 end

 end

end

See Also
audioPluginSource | audioPluginInterface | audioPluginParameter |
generateAudioPlugin | validateAudioPlugin

More About
• “Hierarchies of Classes — Concepts”

Introduced in R2016a

 getSampleRate

4-5

getSampleRate
Class: audioPlugin

Get sample rate at which the plugin is run

Syntax

sampleRate = getSampleRate(myAudioPlugin)

Description

sampleRate = getSampleRate(myAudioPlugin) returns the sample rate in Hz at
which the plugin is being run.

• In a digital audio workstation (DAW) environment, the DAW user sets the sample
rate. getSampleRate interacts with the DAW to determine the sample rate.

• In the MATLAB environment, getSampleRate returns the value set by a previous
call to setSampleRate. If setSampleRate has not been called, getSampleRate
returns the default value, 44100.

Introduced in R2016a

4 Classes in Audio System Toolbox

4-6

setSampleRate
Class: audioPlugin

Set sample rate at which the plugin is run (MATLAB environment only)

Syntax

setSampleRate(myAudioPlugin,sampleRate)

Description

setSampleRate(myAudioPlugin,sampleRate) sets the sample rate of the plugin,
myAudioPlugin, to the value specified by sampleRate. Specify sampleRate as a
positive real integer. setSampleRate enables the MATLAB environment to mimic
behavior in a digital audio workstation (DAW) environment.

Note: Do not use setSampleRate in a generated plugin. If you call setSampleRate in
your plugin, generateAudioPlugin throws an error.

Introduced in R2016a

 audioPluginSource class

4-7

audioPluginSource class

Base class for audio source plugins

Description

audioPluginSource is the base class for audio source plugins. Use audio source plugins
to produce audio signals.

To create a valid audio source plugin, in your class definition file, subclass your
object from the audioPluginSource class. Subclassing enables you to inherit the
attributes necessary to generate audio source plugins and access Audio System Toolbox
functionality. To inherit from the audioPluginSource base class directly, type this
syntax as the first line of your class definition file:

classdef myAudioSourcePlugin < audioPluginSource

myAudioSourcePlugin is the name of your object.

Methods

getSamplesPerFrame Get frame size at which the plugin is run
setSamplesPerFrame Set frame size at which the plugin is run

(MATLAB environment only)

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

(MATLAB environment only)

Copy Semantics

Handle. To learn how handle classes affect copy operations, see “Copying Objects” in the
MATLAB documentation.

4 Classes in Audio System Toolbox

4-8

Examples

Design Valid Audio Plugin

Design a valid basic audio source plugin class

Terminology:

• A valid audio source plugin is one that can be deployed in a digital audio workstation
(DAW) environment. To validate it, use the validateAudioPlugin function. To
generate it, use the generateAudioPlugin function.

• A basic audio source plugin inherits from the audioPluginSource class but not the
matlab.System class.

Define a basic audio source plugin class that inherits from audioPluginSource.

classdef myAudioSourcePlugin < audioPluginSource

end

Add a processing function to your audio source plugin class.

All valid audio source plugins include a processing function. For basic audio source
plugins, the processing function is named process. The processing function defines the
audio signal that your plugin outputs. Audio source plugins do not accept audio signals
as input to the processing function.

The default audio plugin interface assumes a stereo output. Specify the processing output
as a matrix with two columns. These columns correspond to the left and right channels of
a stereo signal. The number of rows in the output matrix correspond to the frame size.

The output frame size must match the frame size of the environment in which the
plugin is run. A DAW environment has variable frame size. To determine the current
environment frame size, call getSamplesPerFrame in the process function.

classdef myAudioSourcePlugin < audioPluginSource

 methods

 function out = process(plugin)

 out = 0.5*randn(getSamplesPerFrame(plugin),2);

 end

 end

end

 audioPluginSource class

4-9

myAudioSourcePlugin generates a Gaussian white noise audio signal with 0.5
standard deviation.

See Also
audioPlugin | audioPluginInterface | audioPluginParameter |
generateAudioPlugin | validateAudioPlugin

More About
• “Hierarchies of Classes — Concepts”

Introduced in R2016a

4 Classes in Audio System Toolbox

4-10

getSamplesPerFrame
Class: audioPluginSource

Get frame size at which the plugin is run

Syntax

frameSize = getSamplesPerFrame(myAudioSourcePlugin)

Description

frameSize = getSamplesPerFrame(myAudioSourcePlugin) returns the frame size
at which the plugin is run. It is valid only when called in the processing function of an
audio source plugin. frameSize is the number of output samples (rows) that the current
call to the processing function of myAudioSourcePlugin must return.

• In a digital audio workstation (DAW) environment, getSamplesPerFrame interacts
with the DAW to determine the frame size. Frame size can vary from call to call, as
determined by the DAW environment.

• In the MATLAB environment, getSamplesPerFrame returns the value set by a
previous call to the setSamplesPerFrame method. If setSamplesPerFrame has not
been called, then getSamplesPerFrame returns the default value, 256.

Introduced in R2016a

 setSamplesPerFrame

4-11

setSamplesPerFrame
Class: audioPluginSource

Set frame size at which the plugin is run (MATLAB environment only)

Syntax

setSamplesPerFrame(myAudioSourcePlugin,frameSize)

Description

setSamplesPerFrame(myAudioSourcePlugin,frameSize) sets the frame size
(rows) that the source plugin, myAudioSourcePlugin, must return in subsequent calls
to its processing function. Specify frameSize as a real integer greater than or equal to 0.
setSamplesPerFrame enables the MATLAB environment to mimic behavior in a digital
audio workstation (DAW) environment.

Note: Do not use setSamplesPerFrame in a generated plugin. If you call
setSamplesPerFrame in your plugin, generateAudioPlugin throws an error.

Introduced in R2016a

5

Blocks in Audio System Toolbox

5 Blocks in Audio System Toolbox

5-2

Audio Device Reader

Record from sound card

Library

Sources

audiosources

Description

The Audio Device Reader block reads audio samples using your computer's audio
device. See “System Interaction of Audio Device Reader Block” on page 5-6 for a
visualization of how the Audio Device Reader block acquires data.

 Audio Device Reader

5-3

Dialog Box

Main Tab

Driver
Driver used to access your audio device, specified as DirectSound or ASIO. The
default is DirectSound. ASIO drivers do not come pre-installed on Windows
machines. You must install an ASIO driver outside of MATLAB to use the ASIO
driver option.

Note: If Driver is specified as ASIO, open the ASIO UI outside of MATLAB to
set the sound card buffer size to the value specified by the Samples per frame
parameter. See the documentation of your ASIO driver for more information.

This parameter applies only on Windows machines. Linux machines always use the
ALSA driver. Mac machines always use the CoreAudio driver.

Device

5 Blocks in Audio System Toolbox

5-4

Device used to acquire audio samples. The default for this parameter is the default
audio input device of your computer. The device list is populated with devices
available on your computer.

Info
Opens a dialog box with information about your configured driver and device, and the
maximum number of channels you can acquire given your configuration.

Sample rate (Hz)
Sample rate used by your device to acquire audio data, in Hz, specified as a positive
integer. The possible range of Sample rate (Hz) depends on your audio hardware.

Number of channels
Number of input channels acquired by your audio device, specified as an integer. The
number of input channels is also the number of channels (matrix columns) output by
the Audio Device Reader block. The range of Number of channels depends on
your audio hardware.

To specify the number of input channels acquired by your audio device, select the
Use default mapping between sound card’s input channels and columns of
output of this block check box.

Samples per frame
Frame size read from audio device, specified as a positive integer. Samples per
frame is also the device buffer size, and the frame size (number of matrix rows)
output by the Audio Device Reader block.

 Audio Device Reader

5-5

Advanced Tab

Device bit depth
Data type used by device to acquire audio data. You can set this parameter to 8-bit
integer, 16-bit integer, 24-bit integer, or 32-bit integer. The default is
16-bit integer.

Use default mapping between sound card’s input channels and columns of
output of this block

When you select this check box, the block uses the default mapping between the
sound card’s input channels and the matrix columns output by this block. When you
clear this check box, you specify the mapping in Device input channels. By default,
this check box is selected.

Device input channels
Nondefault map of device channels and matrix output by the Audio Device
Reader block, specified as a MATLAB vector. For example:

If Device input channels is specified as 1:3, then:

• Channel 1 maps to the first column of the output matrix.

5 Blocks in Audio System Toolbox

5-6

• Channel 2 maps to the second column of the output matrix.
• Channel 3 maps to the third column of the output matrix.

If Device input channels is specified as [3,1,2], then:

• Channel 3 maps to the first column of the output matrix.
• Channel 1 maps to the second column of the output matrix.
• Channel 2 maps to the third column of the output matrix.

To specify a nondefault mapping, clear the Use default mapping between sound
card’s input channels and columns of output of this block check box.

Output number of samples overrun
When you select this check box, an additional output port, O, is added to the block.
The O port outputs the number of samples overrun while acquiring a frame of data
(one output matrix). By default, this check box is cleared.

Output data type
You can set this parameter to uint8, int16, int32, single, or double. The default
is double.

Note: If Output data type is set to double or single, the Audio Device Reader
block outputs data in the range [–1, 1]. For other data types, the range is [min, max]
of the specified data type.

More About

System Interaction of Audio Device Reader Block

The Audio Device Reader block specifies the driver, the device and its attributes, and
the data type and size output from your Audio Device Reader block.

 Audio Device Reader

5-7

Run an Executable Outside MATLAB

The generated code for the Audio Device Reader block relies on prebuilt dynamic
library files that ship with MATLAB. You must account for these extra library files
when you run Audio Device Reader outside the MATLAB environment. To run a
standalone executable generated from a model containing the Audio Device Reader
block, set your system environment using commands specific to your platform.

Platform Command

Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (Bash)

Linux setenv LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;

%PATH%

Alternatively, the packNGo function creates a single zip file containing all pieces
required to run or rebuild this code. See packNGo for more information.

5 Blocks in Audio System Toolbox

5-8

See Also
audioDeviceReader | audioDeviceWriter | Audio Device Writer

Introduced in R2016a

 Audio Device Writer

5-9

Audio Device Writer
Play to sound card

Library

Sinks

audiosinks

Description

The Audio Device Writer block writes audio samples to an audio output device. See
“System Interaction of Audio Device Writer Block” on page 5-13 for a visualization of
how the Audio Device Writer block plays audio data.

Dialog Box

5 Blocks in Audio System Toolbox

5-10

Main Tab

Driver
Driver used to access your audio device, specified as DirectSound or ASIO. The
default is DirectSound. ASIO drivers do not come pre-installed on Windows
machines. You must install an ASIO driver outside of MATLAB to use the ASIO
driver option.

Note: If Driver is specified as ASIO, open the ASIO UI outside of MATLAB to
set the sound card buffer size to the frame size (number of rows) input to the
Audio Device Writer block. See the documentation of your ASIO driver for more
information.

This parameter applies only on Windows machines. Linux machines always use the
ALSA driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio System Toolbox. If the
toolbox is not installed, specifying nondefault Driver values returns an error.

Device
Device used to play audio samples. The default for this parameter is the default
audio output device of your computer. The device list is populated with devices
available on your computer.

Info
Opens a dialog box with information about your configured driver and device, and
the maximum number of channels you can output from your device given your
configuration.

Inherit sample rate from input

 Audio Device Writer

5-11

When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is selected.

Sample rate (Hz)
Sample rate used by device to play audio data, in Hz, specified as a positive integer.
The default is 44100 Hz. The possible range of Sample rate (Hz) depends on your
audio hardware.

You can specify an input sample rate when the Inherit sample rate from input
check box is cleared.

Advanced Tab

Device bit depth
Data type used by device to perform digital-to-analog conversion. Before performing
digital-to-analog conversion, the input data is cast to a data type specified by the
Device bit depth parameter. You can set this parameter to 8-bit integer, 16-
bit integer, 24-bit integer, or 32-bit integer. The default is 16-bit
integer.

To specify a nondefault Device bit depth, you must install Audio System Toolbox.
If the toolbox is not installed, specifying a nondefault Device bit depth returns an
error.

5 Blocks in Audio System Toolbox

5-12

Use default mapping between columns of input of this block and sound card’s
output channels

When you select this check box, the block uses the default mapping between columns
of the matrix input to this block and the channels of your device. When you clear this
check box, you specify the mapping in Device output channels. By default, this
check box is selected.

Device output channels
Nondefault mapping between columns of matrix input to the Audio Device
Writer block and channels of output device, specified as a MATLAB vector. For
example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

To specify a nondefault mapping, clear the Use default mapping between
columns of input of this block and sound card’s output channels check box.

To selectively map between columns of the input matrix and your sound card's output
channels, you must install Audio System Toolbox. If the toolbox is not installed,
specifying nondefault values for Device output channels returns an error.

Output number of samples underrun
When you select this check box, an output port is added to the block. The port
outputs the number of samples underrrun while writing a frame of data (one input
matrix). By default, this check box is cleared.

 Audio Device Writer

5-13

More About

System Interaction of Audio Device Writer Block

Parameters of the Audio Device Writer block specify the driver, the device, and
device attributes such as sample rate and bit depth.

Run an Executable Outside MATLAB

The generated code for the Audio Device Writer block relies on prebuilt dynamic
library files that ship with MATLAB. You must account for these extra library files
when you run Audio Device Writer outside the MATLAB environment. To run a
standalone executable generated from a model containing the Audio Device Writer
block, set your system environment using commands specific to your platform.

Platform Command

Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/maci64 (Bash)

Linux setenv LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (csh/tcsh)

5 Blocks in Audio System Toolbox

5-14

Platform Command

export LD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/

bin/glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;

%PATH%

Alternatively, the packNGo function creates a single zip file containing all pieces
required to run or rebuild this code. See packNGo for more information.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• 32-bit signed integers
• 16-bit signed integers
• 8-bit unsigned integers

Underrun 32-bit unsigned integer

Note: If input to the Audio Device Writer block is of data type double or single,
the Audio Device Writer block clips values outside the range [–1, 1]. For other data
types, the allowed input range is [min, max] of the specified data type.

See Also
audioDeviceWriter | audioDeviceReader | Audio Device Reader

Introduced in R2016a

 Audio Weighting Filter

5-15

Audio Weighting Filter

Design audio weighting filter

Library

Filters

audiofilters

Description

This block brings the filter design capabilities of the filterbuilder function tot he
Simulink® environment.

Dialog Box

See “Audio Weighting Filter Design Dialog Box — Main Pane” for more information
about the parameters of this block.

5 Blocks in Audio System Toolbox

5-16

View Filter Response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing
Toolbox™ product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.

 Audio Weighting Filter

5-17

• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about
filter order, stability, and phase linearity. For more information on FVTool, see the
Signal Processing Toolbox documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter
order.

Weighting type
The weighting type defines the frequency response of the filter. The valid weighting
types for this filter are A, C , C-message, ITU-R 468–4, and ITU-T 0.41. For
definitions of the available weighting types, see the fdesign.audioweighting
reference page.

Class
The filter class describes the frequency-dependent tolerances specified in the relevant
standards [1], [2]. There are two possible class values: 1 and 2. Class 1 weighting
filters have stricter tolerances than class 2 filters. The filter class value does not
affect the design. The class value is only used to provide a specification mask in
fvtool for the analysis of the filter design. The default value of this parameter is 1.

The filter class is only applicable for A weighting and C weighting filters.
Impulse response

Specify the impulse response type as one of IIR or FIR. For A, C , C-message, and
ITU-R 468–4 filter, IIR is the only option. For a ITU-T 0.41 weighting filter, FIR is
the only option.

Frequency units
Specify the frequency units as Hertz (Hz), kilohertz (kHz), megahertz (MHz), or
gigahertz (GHz). Normalized frequency designs are not supported for audio weighting
filters. The default value of this parameter is Hz.

Input Fs
Specify the input sampling frequency. The units correspond to the setting of the
Frequency units parameter.

5 Blocks in Audio System Toolbox

5-18

Algorithm

Design Method
Valid design methods depend on the weighting type. For type A and C weighting
filters, the only valid design type is ANSI S1.42. This is an IIR design method that
follows ANSI standard S1.42–2001. For a C message filter, the only valid design
method is Bell 41009, which is an IIR design method following the Bell System
Technical Reference PUB 41009. For a ITU-R 468–4 weighting filter, you can design
an IIR or FIR filter. If you choose an IIR design, the design method is IIR least
p-norm. If you choose an FIR design, the design method choices are Equirriple or
Frequency Sampling. For an ITU-T 0.41 weighting filter, the available FIR design
methods are Equirriple or Frequency Sampling.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce
the chances that the inputs or calculations in the filter overflow and exceed the
representable range of the filter. Clearing this option removes the scaling. This
parameter applies only to IIR filters.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the
filter structures available to implement your filter. For audio weighting IIR filter
designs, you can choose direct form I or II biquad (SOS). You can also choose to
implement these structures in transposed form.

For FIR designs, you can choose a direct form, direct-form transposed, direct-form
symmetric, or direct-form asymmetric structure.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks.
Clear the check box to implement the filter as a high-level subsystem. By default,
this check box is cleared.

The high-level implementation provides better compatibility across various filter
structures, especially filters that would contain algebraic loops when constructed
using basic elements. On the other hand, using basic elements enables the following
optimization parameters:

 Audio Weighting Filter

5-19

• Optimize for zero gains — Terminate chains that contain Gain blocks with a
gain of zero.

• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays

with a single delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of

negative gains in Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This
parameter is available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary
depending on he settings of the Filter Structure and Use basic elements for
filter customization parameters. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

For more information about sample- and frame-based processing, see “Sample- and
Frame-Based Concepts”.

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB
variables. The available coefficient names differ depending on the filter structure.
Using symbolic names allows tuning of filter coefficients in generated code. By
default, this check box is cleared.

References

[1] American National Standard Design Response of Weighting Networks for Acoustical
Measurements, ANSI S1.42-2001, Acoustical Society of America, New York, NY,
2001.

5 Blocks in Audio System Toolbox

5-20

[2] Electroacoustics Sound Level Meters Part 1: Specifications, IEC 61672-1, First Edition
2002-05.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

See Also
fdesign.audioweighting | filterbuilder | fvtool

How To
• Audio Weighting Filters Example

 Compressor

5-21

Compressor

Dynamic range compressor

Library

Dynamic Range Control

audiodynamicrange

Description

The Compressor block performs dynamic range compression independently across each
input channel. Dynamic range compression attenuates the volume of loud sounds that
cross a given threshold. It uses specified attack and release times to achieve a smooth
applied gain curve. You can tune parameters of the Compressor block to meet your
processing needs.

The input must be a real-valued, double-precision or single-precision matrix. The
Compressor block treats each column of the input as an independent channel.

5 Blocks in Audio System Toolbox

5-22

Dialog Box

 Compressor

5-23

Main Tab

Threshold (dB)
Operation threshold in dB, specified as a real scalar in the range –50 to 0. The
default is –10 dB.

Operation threshold is the level above which gain is applied to the input signal.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Ratio
Compression ratio, specified as a real scalar in the range 1 to 50. The default is 5.

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >

Threshold (dB), the compression ratio is defined as
R

x n T

y n T
=

-

-

([])

([]) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Knee width (dB)
Knee width in dB, specified as a real scalar in the range 0 to 20 dB. The default is 0
dB.

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x
R

x T
W

W
= +

-Ê
ËÁ

ˆ
¯̃

¥ - +Ê
ËÁ

ˆ
¯̃

¥()

1
1

2

2

2

5 Blocks in Audio System Toolbox

5-24

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

View static characteristic
Plots the static compression characteristic of the Compressor block, as defined by
the parameters in the block dialog box. The plot updates when you tune parameters.

 Compressor

5-25

Attack time (s)
Attack time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.05 seconds.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its
final value when the input goes above the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Release time (s)
Release time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.2 seconds.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its
final value when the input goes below the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Make-up gain mode
Make-up gain mode, specified as Auto or Property. The default is Property.

• Auto — Make-up gain is applied at the output of the Compressor block such that
a steady-state 0 dB input has a 0 dB output.

• Property — Make-up gain is set to the value specified by Make-up gain (dB).

Make-up gain (dB)
Make-up gain in dB, specified as a real scalar in the range –10 to 24. The default is 0
dB.

Make-up gain compensates for gain lost during compression. It is applied at the
output of the Compressor block. This parameter is available when you set Make-up
gain mode to Property.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is selected.

5 Blocks in Audio System Toolbox

5-26

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100 Hz. You can
specify an input sample rate when the Inherit sample rate from input check box
is cleared.

 Compressor

5-27

Advanced Tab

Output gain (dB)

5 Blocks in Audio System Toolbox

5-28

When you select this check box, an additional output port, G, is added to the block.
The G port outputs the gain applied on each input channel in dB. By default, this
check box is cleared.

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time
and has simulation speed comparable to Code generation. In this mode, you
can debug the source code of the block.

• Code generation

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional
startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

Algorithm

The Compressor block processes a signal frame by frame and element by element.

 Compressor

5-29

1 The N-point signal, x[n], is converted to decibels:

x n x n
dB

[] log [] .= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
compression characteristic of the Compressor block to attenuate gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

g x

x x T
W

x
R

x T
W

W
Tc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃ -

2

1
1

2

2

2

WW
x T

W

T
x T

R
x T

W

dB

dB
dB

2 2

2

Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
ÔÔ
Ô
Ô

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

5 Blocks in Audio System Toolbox

5-30

g x

x x T

T
x T

R
x T

c dB

dB dB

dB
dB

() .=

<

+
-()

≥

Ï

Ì
Ô

ÓÔ

3 The gain modification, gΔ[n], is calculated as

g n g n x nc dBD
[] [] [].= -

4 gΔ[n] is smoothed using specified attack and release time parameters,

g n
g n g n g n g n

g n gs
A s A s

R s R

[]
[] () [] , [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1

D D

DD D[] , [] []
,

n g n g ns£ -

Ï
Ì
Ô

ÓÔ 1

where αA , the attack time coefficient, is calculated as

a A
AFs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
,

9

and αR , the release time coefficient, is calculated as

a
R

RFs T
= -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or the Input
sample rate (Hz) parameter.

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative
of the computed gain for a 0 dB input,

M g xc dB= - =().0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB), Ratio, and Knee
width (dB) parameters. It does not depend on the input signal.

 Compressor

5-31

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

g n g n MdB s[] [] .= +

7 The calculated gain in dB, gdB[n], is translated to a linear domain:

g nlin

g ndB

[] .

[]

=
Ê
ËÁ

ˆ
¯̃10 20

8 The output of the Compressor block is given as

y n x n g nlin[] [] [].= ¥

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis”. Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

See Also
compressor | Expander | Limiter | Noise Gate

Introduced in R2016a

5 Blocks in Audio System Toolbox

5-32

Crossover Filter

Audio crossover filter

Library

Filters

audiofilters

Description

The Crossover Filter block implements an audio crossover filter, which is used to
split an audio signal into two or more frequency bands. Crossover filters are multiband
filters whose overall magnitude frequency response is flat.

The input must be a real-valued, double-precision or single-precision matrix. The
Crossover Filter block treats each column of the input as an independent channel.

 Crossover Filter

5-33

Dialog Box

Number of crossovers
Number of magnitude response band crossings, specified as 1, 2, 3, or 4. The
default is 1. If multiple crossovers are specified, your dialog box populates with the

5 Blocks in Audio System Toolbox

5-34

corresponding parameters for Crossover frequency (Hz) and Crossover order
automatically.

The number of bands output by the Crossover Filter block is one more than the
Number of crossovers.

Number of crossovers Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

This parameter is not tunable. You cannot change the value of this parameter when
the simulation is running.

Crossover frequency (Hz)
Crossover frequencies in Hz, specified as a real scalar in the range 20 to 20,000 Hz.
The default is 100 Hz.

Crossover frequencies are the intersections of magnitude response bands of the
individual two-band crossover filters used in the multiband crossover filter.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Crossover order
Crossover filter order, specified as 1, 2, 3, 4, 5, 6, 7, or 8. The default is 2.

Crossover filter order relates to crossover filter slope in dB/octave: slope N= ¥6,

where N is the crossover order.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

View filter response
Plots the magnitude response of the Crossover Filter block, as defined by the
parameters in the block dialog box. The plot updates when you tune parameters.

 Crossover Filter

5-35

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is cleared.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100. You can specify
an input sample rate when the Inherit sample rate from input check box is
cleared.

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

5 Blocks in Audio System Toolbox

5-36

Simulate model using the MATLAB interpreter. This option shortens startup time
and has simulation speed comparable to Code generation. In this mode, you
can debug the source code of the block.

• Code generation

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional
startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

Algorithms

The Crossover Filter block is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented
with Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

 Crossover Filter

5-37

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the
branches of your crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

5 Blocks in Audio System Toolbox

5-38

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions
of the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References

[1] D’Appolito, Joseph A. “Active Realization of Multiway All-Pass Crossover Systems”.
Journal of Audio Engineering Society. Vol. 35, Issue 4, pp. 239–245.

See Also
crossoverFilter

Related Examples
• “Multiband Dynamic Range Compression”

Introduced in R2016a

 Expander

5-39

Expander

Dynamic range expander

Library

Dynamic Range Control

audiodynamicrange

Description

The Dynamic Range Expander block performs dynamic range expansion independently
across each input channel. Dynamic range expansion attenuates the volume of quiet
sounds below a given threshold. It uses specified attack, release, and hold times to
achieve a smooth applied gain curve. You can tune parameters of the Dynamic Range
Expander block to meet your processing needs.

The input must be a real-valued, double-precision or single-precision matrix. The
Dynamic Range Expander block treats each column of the input as an independent
channel.

5 Blocks in Audio System Toolbox

5-40

Dialog Box

Main Tab

Ratio

 Expander

5-41

Expansion ratio, specified as a real scalar in the range 1 to 50. The default is 5.

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <

Threshold (dB), the expansion ratio is defined as
R

y n T

x n T
=

-

-

([])

([]) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Threshold (dB)
Operation threshold in dB, specified as a real scalar in the range –140 to 0. The
default is –10 dB.

Operation threshold is the level below which gain is applied to the input signal.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Knee width (dB)
Knee width in dB, specified as a real scalar in the range 0 to 20. The default is 0 dB.

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

R x T
W

W
= +

- ¥ - -Ê
ËÁ

ˆ
¯̃

¥()

()1
2

2

2

for the range 2 ¥ -() £x T W .

5 Blocks in Audio System Toolbox

5-42

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

View static characteristic
Plots the static expansion characteristic of the Dynamic Range Expander block, as
defined by the parameters in the block dialog box. The plot updates when you tune
parameters.

 Expander

5-43

Attack time (s)
Attack time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.05 seconds.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final
value when the input goes below the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Release time (s)
Release time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.2 seconds.

Release time is the time it takes the expander gain to drop from 90% to 10% of its
final value when the input goes above the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Hold time (s)
Hold time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.05 seconds.

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses
the operation threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is selected.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100 Hz. You can
specify an input sample rate when the Inherit sample rate from input check box
is cleared.

5 Blocks in Audio System Toolbox

5-44

Advanced Tab

Output gain (dB)
When you select this check box, an additional output port, G, is added to the block.
The G port outputs the gain applied on each input channel in dB. By default, this
check box is cleared.

 Expander

5-45

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time
and has simulation speed comparable to Code generation. In this mode, you
can debug the source code of the block.

• Code generation

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional
startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

See Also
expander | Compressor | Limiter | Noise Gate

Introduced in R2016a

5 Blocks in Audio System Toolbox

5-46

Limiter

Dynamic range limiter

Library

Dynamic Range Control

audiodynamicrange

Description

The Limiter block performs dynamic range limiting independently across each input
channel. Dynamic range limiting suppresses the volume of loud sounds that cross a given
threshold. It uses specified attack and release times to achieve a smooth applied gain
curve. You can tune parameters of the Limiter block to meet your processing needs.

The input must be a real-valued, double-precision or single-precision matrix. The
Limiter block treats each column of the input as an independent channel.

 Limiter

5-47

Dialog Box

5 Blocks in Audio System Toolbox

5-48

Main Tab

Threshold (dB)
Operation threshold in dB, specified as a real scalar in the range –50 to 0. The
default is –10 dB.

Operation threshold is the level above which gain is applied to the input signal.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Knee width (dB)
Knee width in dB, specified as a real scalar in the range 0 to 20. The default is 0 dB.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

x T
W

W
= -

- +Ê
ËÁ

ˆ
¯̃

¥()
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

View static characteristic
Plots the static limiter characteristic of the Limiter block, as defined by the
parameters in the block dialog box. The plot updates when you tune parameters.

 Limiter

5-49

Attack time (s)
Attack time in seconds, specified as a real scalar in the range 0 to 4. The default is 0
seconds.

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final
value when the input goes above the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Release time (s)
Release time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.2 seconds.

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

5 Blocks in Audio System Toolbox

5-50

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Make-up gain mode
Make-up gain mode, specified as Auto or Property. The default is Property.

• Auto — Make-up gain is applied at the output of the Limiter block such that a
steady-state 0 dB input has a 0 dB output.

• Property — Make-up gain is set to the value specified by Make-up gain (dB).

Make-up gain (dB)
Make-up gain in dB, specified as a real scalar in the range –10 to 24. The default is 0
dB.

Make-up gain compensates for gain lost during limiting. It is applied at the output of
the Limiter block. This parameter is available when you set Make-up gain mode
to Property.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is selected.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100 Hz. You can
specify an input sample rate when the Inherit sample rate from input check box
is cleared.

 Limiter

5-51

Advanced Tab

Output gain (dB)

5 Blocks in Audio System Toolbox

5-52

When you select this check box, an additional output port, G, is added to the block.
The G port outputs the gain applied on each input channel in dB. By default, this
check box is cleared.

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time
and has simulation speed comparable to Code generation. In this mode, you
can debug the source code of the block.

• Code generation

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional
startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

See Also
limiter | Compressor | Expander | Noise Gate

Introduced in R2016a

 MIDI Controls

5-53

MIDI Controls

Output values from controls on MIDI control surface

Library

Sources

audiosources

Description

The MIDI Controls block outputs values from controls on a MIDI control surface in real
time.

Use the MIDI device parameter to specify the name of the MIDI control surface device
from which to receive control values. You can choose:

• Default

• Specify other

If you choose Default, the block looks for a MATLAB preference with a group named
midi and preference named DefaultDevice. You can set this preference using the
MATLAB setpref function. For example, if the desired device is named BCF2000, you
can type the following command at the MATLAB command line:

>> setpref('midi', 'DefaultDevice', 'BCF2000');

If the block does not find this preference, it then attempts to choose a device using an
algorithm that is unspecified and platform dependent.

If you choose Specify other, then a MIDI device name edit box appears for you
to enter a MATLAB expression for the device name. Enter any MATLAB expression

5 Blocks in Audio System Toolbox

5-54

that can evaluate to a string. Literal names must be enclosed in quotes, (for example,
'BCF2000').

You can determine the name of your MIDI device using the MATLAB function midiid,
discussed in “Identifying MIDI Device Names and Control Numbers” on page 5-55.

Use the MIDI controls parameter to specify the controls on the MIDI device to which
the block should respond. This parameter also determines the size of the block output
port. You can choose:

• Respond to any control

• Respond to specified controls

If you choose Respond to any control, then the block output will be a scalar. This
scalar outputs the value from any and all controls that are manipulated on the MIDI
device. Use this option in simple cases when you need only a single control value and the
control to which it responds is unimportant.

If you choose Respond to specified controls, then a MIDI control numbers
edit box opens. In this box, enter a MATLAB expression for the device control numbers.
Enter any MATLAB expression that can evaluate to a row vector of real double-precision
values. The block outputs a 1-D vector with one element corresponding to the output of
each specified control.

Use the Initial values parameter to specify the value of the block output when
simulation starts. The MIDI protocol transmits control values only when a control
changes. This protocol provides no means for the block to query the current value of a
control. Thus, the block must have some initial value to output until it receives a control
change from the device.

Use the Send initial values to device at start check box to synchronize the device
controls with the block outputs when simulation starts. Some MIDI control surfaces
are bidirectional, meaning that they not only send control values but can also receive
them. For example, some devices have motorized controls that move to the appropriate
position when they receive a control value. If you have such a bidirectional device, select
this check box. The block attempts to send the initial values to the device when the
simulation starts. No diagnostic message appears if the attempt fails.

The generated code for this block relies on prebuilt .dll files. You can run this code
outside the MATLAB environment, or redeploy. However you must account for these
extra .dll files when doing so. The packNGo function creates a single .zip file containing
all of the pieces required to run or rebuild this code. See packNGo for more information.

 MIDI Controls

5-55

Output Port

The MIDI Controls block output is a vector whose width is determined by the MIDI
controls and MIDI control numbers parameters previously described. The output
data type can be either real double-precision floating point, or uint8 integer if the output
mode is 'Raw MIDI'. The output values range from 0.0 to 1.0, inclusively, and in the
raw mode, they range from 0 to 127, inclusively. The output port back inherits its sample
time.

Identifying MIDI Device Names and Control Numbers

To specify a particular control on a particular MIDI device, you must know the name
assigned to the device by the operating system. In addition, a number is always
associated with the control. You can interactively discover this information using the
MATLAB function, midiid. Follow these steps to identify device names and control
numbers:

1 Verify that MIDI control surface device is correctly connected to the host computer
running MATLAB.

Note: For the most consistent behavior, MathWorks recommends that you connect
your MIDI control surface device to your computer before starting MATLAB. In some
circumstances MATLAB may not be able to find your device if you connect it after
starting your MATLAB session. Also, it may not find your device if you disconnect it
and reconnect it during your MATLAB session.

2 Type the following command at the MATLAB command line.

>> [ctlnum devname] = midiid

You are prompted to move the control in which you are interested.

>> [ctlnum devname] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message ...

3 Move the control. midiid detects the movement and returns the device name and
control number.

>> [ctlnum devname] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message ... done

5 Blocks in Audio System Toolbox

5-56

ctlnum =

 1081

devname =

 BCF2000

>>

4 Use the device name in the block dialog, or set it as the default device using
setpref. Then, enter the control number in the block dialog. Concatenate the
number with other control numbers as needed.

Examples

How to Output Values from Controls

Use this example to familiarize yourself with how to set controls in the MIDI Controls
block as it interacts with the MIDI control surface.

Open the ex_simplemidi model, and follow these steps:

Connect a MIDI device to the computer.

Use midiid to determine the name of the device, and set it on the MIDI Controls block.

Verify that any control changes the display value.

Use midiid to determine the number of a particular control, and set that on the MIDI
Controls block.

Verify that a particular control changes the display value and that other controls do not.

Use midiid to determine the number of a few more controls, and set those on the MIDI
Controls block.

Verify that the display block shows the correct number of values. Also verify that the
controls you specified change the appropriate display values and that the other controls
do not change the values.

 MIDI Controls

5-57

Set each control to have a unique initial value.

Verify that the correct initial values appear on the display when the model starts.

If your MIDI device is bidirectional, on the MIDI Controls block, select the Send initial
values to device at start check box.

Verify that the controls are set to the correct initial values when the model starts.

Dialog Box

5 Blocks in Audio System Toolbox

5-58

MIDI device
Specify whether to use a default MIDI device, or specify a particular device by name.

MIDI device name
Specify the name of a particular MIDI control surface device from which to receive
control values.

MIDI controls
Specify whether to respond to any control on the MIDI device or respond to particular
specified controls.

MIDI control numbers
Specify particular controls to which the block should respond.

Initial values
Specify initial values to output when simulation starts.

Send initial values to device at start
Select this check box to attempt to synchronize a bidirectional MIDI device with block
initial values when simulation starts.

Output mode
Specify the mode in which the control values are generated. When you set Output
mode to Normalized (0-1), the block generates control values in the range [0
1]. In this mode, control values are represented as a fraction of a full-scale. Hence,
you can easily scale this range to your particular application. When you set Output
mode to RAW MIDI (0-127), the block generates byte-oriented MIDI control values
in the range [0 127]. By default, this parameter is set to Normalized (0-1).

Supported Data Types

Port Supported Data Types

Output • Double-precision floating point, uint8 integer

 Noise Gate

5-59

Noise Gate

Dynamic range gate

Library

Dynamic Range Control

audiodynamicrange

Description

The Noise Gate block performs dynamic range gating independently across each input
channel. Dynamic range gating suppresses signals below a given threshold. It uses
specified attack, release, and hold times to achieve a smooth applied gain curve. You can
tune parameters of the Noise Gate block to meet your processing needs.

The input must be a real-valued, double-precision or single-precision matrix. The Noise
Gate block treats each column of the input as an independent channel.

5 Blocks in Audio System Toolbox

5-60

Dialog Box

Main Tab

Threshold (dB)

 Noise Gate

5-61

Operation threshold in dB, specified as a real scalar in the range –140 to 0. The
default is –10 dB.

Operation threshold is the level below which gain is applied to the input signal.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

View static characteristic
Plots the static gate characteristic of the Noise Gate block, as defined by the
parameters in the block dialog box. The plot updates when you tune parameters.

Attack time (s)
Attack time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.05 seconds.

5 Blocks in Audio System Toolbox

5-62

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final
value when the input goes below the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Release time (s)
Release time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.2 seconds.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Hold time (s)
Hold time in seconds, specified as a real scalar in the range 0 to 4. The default is
0.05 seconds.

Hold time is the period in which the applied gain is held constant before it starts
moving toward its steady-state value. Hold time begins when the input level crosses
the operation threshold.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is selected.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100 Hz. You can
specify an input sample rate when the Inherit sample rate from input check box
is cleared.

 Noise Gate

5-63

Advanced Tab

Output gain (dB)
When you select this check box, an additional output port, G, is added to the block.
The G port outputs the gain applied on each input channel in dB. By default, this
check box is cleared.

5 Blocks in Audio System Toolbox

5-64

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time
and has simulation speed comparable to Code generation. In this mode, you
can debug the source code of the block.

• Code generation

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional
startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

See Also
noiseGate | Compressor | Expander | Limiter

Introduced in R2016a

 Octave Filter

5-65

Octave Filter

Design octave filter

Library

Filters

audiofilters

Description

This block brings the filter design capabilities of the filterbuilder function to the
Simulink environment.

Dialog Box

See “Octave Filter Design Dialog Box — Main Pane” for more information about the
parameters of this block.

Parameters of this block that do not change filter order or structure are tunable.

5 Blocks in Audio System Toolbox

5-66

View filter response

 Octave Filter

5-67

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing
Toolbox product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about
filter order, stability, and phase linearity. For more information on FVTool, see the
Signal Processing Toolbox documentation.

Filter Specifications

Order
Specify filter order. Possible values are: 4, 6, 8, 10.

Bands per octave
Specify the number of bands per octave. Possible values are: 1, 3, 6, 12, 24.

Frequency units
Specify frequency units as Hz or kHz.

Input Fs
Specify the input sampling frequency in the frequency units specified previously.

Center Frequency
Select from the drop-down list of available center frequency values.

Algorithm

Design Method
Butterworth is the design method used for this type of filter.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter Implementation

Structure
Specify filter structure. Choose from:

5 Blocks in Audio System Toolbox

5-68

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks.
Clear the check box to implement the filter as a high-level subsystem. By default,
this check box is cleared.

The high-level implementation provides better compatibility across various filter
structures, especially filters that would contain algebraic loops when constructed
using basic elements. On the other hand, using basic elements enables the following
optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a
gain of zero.

• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays

with a single delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of

negative gains in Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This
parameter is available only for SOS filters.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate
processing rule for the block from following options:

• Enforce single-rate processing — When you select this option, the block
maintains the sample rate of the input.

• Allow multirate processing — When you select this option, the block
adjusts the rate at the output to accommodate an increased or reduced number of
samples. To select this option, you must set the Input processing parameter to
Elements as channels (sample based).

Use symbolic names for coefficients

 Octave Filter

5-69

Select this check box to enable the specification of coefficients using MATLAB
variables. The available coefficient names differ depending on the filter structure.
Using symbolic names allows tuning of filter coefficients in generated code. By
default, this check box is cleared.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

5 Blocks in Audio System Toolbox

5-70

Parametric EQ Filter

Model second-order parametric equalizer filter

Library

Filters

audiofilters

Description

The Parametric EQ Filter block filters each channel of the input signal over time using
a specified center frequency, bandwidth, and peak (dip) gain. This block offers tunable
filter design parameters, which enable you to tune the filter characteristics while the
simulation is running.

The block designs the filter according to the filter parameters set in the block dialog box.
The output port properties, such as datatype, complexity, and dimension, are identical to
the input port properties.

Each column of the input signal is treated as a separate channel. If the input is a two-
dimensional signal, the first dimension represents the channel length (or frame size)
and the second dimension represents the number of channels. If the input is a one-
dimensional signal, then it is interpreted as a single channel.

This block supports variable-size input, enabling you to change the channel length
during simulation. To enable variable-size input, clear the Inherit sample rate from
input check box. The number of channels must remain constant.

 Parametric EQ Filter

5-71

Dialog Box

Filter specification
Parameters or coefficients used to design the filter, specified as one of the following:

• Bandwidth and center frequency (default) — Design the filter using Filter
bandwidth (Hz), Equalizer center frequency (Hz), and Gain (dB).

• Coefficients — Design the filter using Bandwidth coefficient, Center
frequency coefficient, and Gain (Linear Units).

• Quality factor and center frequency — Design the filter using
Equalizer center frequency (Hz), Gain (dB), and Quality factor.

This parameter is nontunable.

5 Blocks in Audio System Toolbox

5-72

Filter bandwidth (Hz)
Bandwidth of the filter, specified as a finite positive numeric scalar that is less than
half the sample rate of the input signal. This parameter applies when you set Filter
specification to Bandwidth and center frequency. The default is 2205. This
parameter is tunable.

Equalizer center frequency (Hz)
Center frequency of the filter, specified as a finite positive scalar that is less than
half the sample rate of the input signal. This parameter applies when you set Filter
specification to Bandwidth and center frequency or Quality factor and
center frequency. The default is 11025. This parameter is tunable.

Gain (dB)
Peak or dip gain of the filter, specified as a real scalar in dB. A value greater
than zero corresponds to a peak. A value less than zero corresponds to a dip. This
parameter applies when you set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency. The default is 6.0206.
This parameter is tunable.

Bandwidth coefficient
Coefficient that determines the filter bandwidth, specified as a finite numeric scalar
in the range [-1 1].

• -1 corresponds to the maximum bandwidth (one-fourth the sample rate of the
input signal).

• 1 corresponds to the minimum bandwidth (0 Hz, that is, an allpass filter).

This parameter applies when you set Filter specification to Coefficients. The
default is 0.72654. This parameter is tunable.

Center frequency coefficient
Coefficient that determines the center frequency of the filter, specified as a finite
numeric scalar in the range [-1 1].

• -1 corresponds to the minimum center frequency (0 Hz).
• 1 corresponds to the maximum center frequency (half the sample rate of the input

signal).

This parameter applies when you set Filter specification to Coefficients. The
default is 0, which corresponds to one-fourth the sample rate of the input signal. This
parameter is tunable.

 Parametric EQ Filter

5-73

Gain (Linear Units)
Peak or dip gain of the filter, specified as a real positive scalar in linear units. A
value greater than one boosts the input signal. A value less than one attenuates
the input signal. This parameter applies when you set Filter specification to
Coefficients. The default is 2. This parameter is tunable.

Quality factor
Quality factor of the filter, specified as a real positive scalar. The quality factor is
defined as Equalizer center frequency (Hz) / Filter bandwidth (Hz). A higher
quality factor corresponds to a narrower peak or dip. This parameter applies when
you set Filter specification to Quality factor and center frequency. The
default is 5. This parameter is tunable.

Inherit sample rate from input
When you select this check box, the block’s sample rate is computed as N/Ts, where
N is the frame size of the input signal, and Ts is the sample time of the input signal.
When you clear this check box, the block sample rate is the value specified in Input
sample rate (Hz). By default, this check box is selected.

Input sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar value. The default is
44100. This parameter applies when you clear the Inherit sample rate from input
check box. This parameter is nontunable.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase
response of the Parametric EQ Filter. The response is based on the block dialog
box parameters. Changes made to these parameters update FVTool.

5 Blocks in Audio System Toolbox

5-74

To update the magnitude response while FVTool is running, modify the dialog box
parameters and click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

 Parametric EQ Filter

5-75

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires
additional startup time but provides faster simulation speed than Interpreted
execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup
time but has slower simulation speed than Code generation.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

Algorithms

This block brings the capabilities of the dsp.ParametricEQFilter System object to the
Simulink environment.

The filter uses a coupled allpass structure to optimize joint computation of the peak and
notch response. For information on the algorithms used by the Parametric EQ Filter
block, see the “Algorithm” section of dsp.ParametricEQFilter.

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing . Upper Saddle River, NJ:
Prentice-Hall, 1996.

5 Blocks in Audio System Toolbox

5-76

See Also

multibandParametricEQ

 Reverberator

5-77

Reverberator

Add reverberation to audio signal

Library

Effects

audioeffects

Description

The Reverberator block adds reverberation to mono or stereo audio signals. You can
tune parameters of the Reverberator block to mimic different acoustic environments.

The input must be a real-valued, double-precision or single-precision matrix. The
input matrix must have one or two columns, corresponding to a mono or stereo
signal, respectively. The Reverberator block treats each column of the input as an
independent channel. The output is always stereo.

5 Blocks in Audio System Toolbox

5-78

Dialog Box

Pre-delay (s)
Pre-delay for reverberation in seconds, specified as a real scalar in the range 0 to 1.
The default is 0 seconds.

 Reverberator

5-79

Pre-delay for reverberation is the time between hearing direct sound and the first
early reflection. The value of Pre-delay (s) is proportional to the size of the room
being modeled.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Highcut frequency (Hz)
Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to

SampleRate

2

Ê
ËÁ

ˆ
¯̃

. The default is 20000 Hz.

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at
the front of the reverberator structure. It prevents the application of reverberation to
high-frequency components of the input.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Diffusion
Density of reverb tail, specified as a real positive scalar in the range 0 to 1. The
default is 0.50.

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Decay factor
Decay factor of reverb tail, specified as a real positive scalar in the range 0 to 1. The
default is 0.50.

Decay factor is proportional to the time it takes for reflections to run out of energy.
To model a large room, use a long reverb tail (low decay factor). To model a small
room, use a short reverb tail (high decay factor).

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

High frequency damping

5 Blocks in Audio System Toolbox

5-80

High-frequency damping, specified as a real positive scalar in the range 0 to 1. The
default is 0.0005.

High frequency damping is proportional to the attenuation of high frequencies in
the reverberation output. Setting High frequency damping to a large value makes
high-frequency reflections decay faster than low-frequency reflections.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Wet/dry mix
Wet-dry mix, specified as a real positive scalar in the range 0 to 1. The default is 0.3.

Wet-dry mix is the ratio of wet (reverberated) signal to dry (original) signal that your
Reverberator block outputs.

This parameter is tunable. You can change the value of this parameter even when
the simulation is running.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input
signal. When you clear this check box, you specify the sample rate in Input sample
rate (Hz). By default, this check box is selected.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100 Hz. You can
specify an input sample rate when the Inherit sample rate from input check box
is cleared.

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time
and has simulation speed comparable to Code generation. In this mode, you
can debug the source code of the block.

• Code generation

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional

 Reverberator

5-81

startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point

Algorithm

The algorithm to add reverberation is based on the plate-class reverberation topology
described in [1].

References

[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the
Audio Engineering Society. Vol. 45, Issue 9, pp. 660–684.

See Also
reverberator

Introduced in R2016a

